索引:用还是不用,这是个问题


前言

提起优化 SQL,你可能会把它理解为优化索引。简单来说这也不算错,索引在 SQL 优化中占了很大的比重。索引用得好,可以将 SQL 查询的效率提升 10 倍甚至更多。但在有些情况下,创建索引反而会降低效率。

本篇解决两个问题

  1. 什么情况下创建索引,什么时候不需要索引?
  2. 索引的种类有哪些?

索引是万能的吗?

索引就是帮助数据库管理系统高效获取数据的数据结构。

如果我们不使用索引,就必须从第 1 条记录开始扫描,直到把所有的数据表都扫描完,才能找到想要的数据。既然如此,如果我们想要快速查找数据,就只需要创建更多的索引就好了。其实索引不是万能的,在有些情况下使用索引反而会让效率变低。

  1. 在数据表中的数据行数比较少的情况下,比如不到 1000 行,不需要创建索引。
  2. 当数据重复度大,比如高于 10% 的时候,也不需要对这个字段使用索引。比如想要在 100 万行数据中查找其中的 50 万行(比如性别为男的数据),一旦创建了索引,你需要先访问 50 万次索引,然后再访问 50 万次数据表,这样加起来的开销比不使用索引可能还要大。

索引的种类有哪些?

按功能逻辑划分

从功能逻辑上说,索引主要有 4 种,分别是普通索引、唯一索引、主键索引和全文索引。

  • 普通索引是基础的索引,没有任何约束,主要用于提高查询效率。
  • 唯一索引就是在普通索引的基础上增加了数据唯一性的约束,在一张数据表里可以有多个唯一索引。
  • 主键索引在唯一索引的基础上增加了不为空的约束,也就是 NOT NULL+UNIQUE,一张表里最多只有一个主键索引。 这是由主键索引的物理实现方式决定的,因为数据存储在文件中只能按照一种顺序进行存储。但可以有多个普通索引或者多个唯一索引。
  • 全文索引用的不多,MySQL 自带的全文索引只支持英文。我们通常可以采用专门的全文搜索引擎,比如 ES(ElasticSearch) 和 Solr。

按物理实现划分

按照物理实现方式,索引可以分为 2 种:聚集索引和非聚集索引。我们也把非聚集索引称为二级索引或者辅助索引。

聚集索引可以按照主键来排序存储数据,这样在查找行的时候非常有效。也就是说索引和数据是一起的。

非聚集索引:数据库系统会有单独的存储空间存放非聚集索引,即有单独的索引表。索引表只存索引,不存储索引指向的数据。 也就是说系统会进行两次查找,第一次先找到索引,第二次找到索引对应的位置取出数据行。

使用聚集索引的时候,数据的查询效率高,但如果对数据进行插入,删除,更新等操作,效率会比非聚集索引低。

对 WHERE 子句的字段建立索引,可以大幅提升查询效率。
采用聚集索引进行数据查询,比使用非聚集索引的查询效率略高。如果查询次数比较多,还是尽量使用主键索引进行数据查询。

按字段个数划分

索引还可以按照字段个数进行划分,分成单一索引和联合索引。索引列为一列时为单一索引;多个列组合在一起创建的索引叫做联合索引。

创建联合索引时,我们需要注意创建时的顺序问题,因为联合索引 (x, y, z) 和 (z, y, x) 在使用的时候效率可能会存在差别。

这里需要说明的是联合索引存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。比如刚才举例的 (x, y, z),如果查询条件是 WHERE x=1 AND y=2 AND z=3,就可以匹配上联合索引;如果查询条件是 WHERE y=2,就无法匹配上联合索引。


总结

使用索引可以帮助我们从海量的数据中快速定位想要查找的数据,不过索引也存在一些不足,比如占用存储空间、降低数据库写操作的性能等,如果有多个索引还会增加索引选择的时间。当我们使用索引时,需要平衡索引的利(提升查询效率)和弊(维护索引所需的代价)。

在实际工作中,我们还需要基于需求和数据本身的分布情况来确定是否使用索引,尽管索引不是万能的,但数据量大的时候不使用索引是不可想象的,毕竟索引的本质,是帮助我们提升数据检索的效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tzzt01

您的支持是我坚持下去的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值