Subsets II

Given a collection of integers that might contain duplicates, nums, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If nums = [1,2,2], a solution is:

[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]


解答:

1.我的想法,对于任意一个输入{1,2,3},则二进制对应有0~7,这8个数的每位对应1,就把对应的数字输出,若为0,则不输出。因此得到的就是集合。

vector<vector<int>> subsetsWithDup(vector<int>& nums) {
    int len = nums.size();
    int base = 1;
    vector<int> vec;
    vector<vector<int>> res;
    for(int i = len-1; i >= 0; i--){
        base *= 2;
    }
    
    for(int j = 0; j <= base-1; j++){
        vec.clear();
        int jr = j;
        int k = len-1;
        int r = 0;
        while(jr > 0){
            int yu = jr % 2;
            jr = jr / 2;
            if(yu == 1)
             r = nums[k];
             k--;
            if(yu > 0)
                vec.push_back(r);
            
        }
        
        sort(vec.begin(),vec.end());
        res.push_back(vec);
    }
    sort(res.begin(),res.end());
    res.erase(unique(res.begin(),res.end()),res.end());
    return res;
}




2.大牛的做法。

先把总集合输入空集合{},然后一个个数字往上加。对于{1,2,3}。先加1,得到{1},总集合里有{{},{1}}。

再对总集合的每个小集合加入数字2,得到{2},{1,2},则总的集合有{{},{1},{2},{1,2}}。数字3也是如此。


对于重复数字,就用count计数。{1,2,2}。先加1,得到{1},总集合里有{{},{1}}。

再对总集合的每个小集合加入数字2,得到{2},由于count=2,则再加入2,得到集合{2,2}。再对{1}加2,{1,2},再加入{2},得到{1,2,2}。

则总的集合有{{},{1},{2},{2,2},{1,2},{1,2,2}}。


vector<vector<int> > subsetsWithDup(vector<int> &S) {
        vector<vector<int> > totalset = {{}};
        sort(S.begin(),S.end());
        for(int i=0; i<S.size();){
            int count = 0; // num of elements are the same
            while(count + i<S.size() && S[count+i]==S[i])  count++;
            int previousN = totalset.size();
            for(int k=0; k<previousN; k++){
                vector<int> instance = totalset[k];
                for(int j=0; j<count; j++){
                    instance.push_back(S[i]);
                    totalset.push_back(instance);
                }
            }
            i += count;
        }
        return totalset;
        }


3.迭代做法

 vector<vector<int>> subsetsWithDup(vector<int>& nums) {
    vector<vector<int>> ret;
    ret.push_back(vector<int>());
    sort(nums.begin(), nums.end());
    vector<vector<int>> sub;
    for (int i = 0; i < nums.size(); ++i) {
        if (i == 0 || nums[i] != nums[i-1]) sub = ret;
        for (auto& j:sub) j.push_back(nums[i]);
        ret.insert(ret.end(), sub.begin(), sub.end());
    }
    return ret;
}

4.回溯方法

class Solution {
public:
    std::vector<std::vector<int> > subsetsWithDup(std::vector<int> &nums) {
        std::sort(nums.begin(), nums.end());
        std::vector<std::vector<int> > res;
        std::vector<int> vec;
        subsetsWithDup(res, nums, vec, 0);
        return res;
    }
private:
    void subsetsWithDup(std::vector<std::vector<int> > &res, std::vector<int> &nums, std::vector<int> &vec, int begin) {
        res.push_back(vec);
        for (int i = begin; i != nums.size(); ++i)
            if (i == begin || nums[i] != nums[i - 1]) { 
                vec.push_back(nums[i]);
                subsetsWithDup(res, nums, vec, i + 1);
                vec.pop_back();
            }
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值