RMQ小结

                                  RMQ小结

区间求值得算法主要有三种:

一、处理O(N),查询O(N*Q)   (朴素)

二、处理O(log N),查询(QlogN) (线段树)

三、处理O(nlogn),查询(1)    (RMQ)

而我们主要来讲一下,O(nlogn)-O(1)的RMQ算法。而RMQ算法的实现又有多种算法,我就选了一种性价比最高的讲解。就是代码容易,时间也可以的算法。因为正宗的RMQ的时间是O(N)-O(1),我主要说的是ST算法O(NlogN)-O(1)的算法。

RMQ的本质思想是动态规划。度娘如是解释:

     ST算法(Sparse Table),以求最大值为例,设d[i,j]表示[i,i+2^j-1]这个区间内的最大值,那么在询问到[a,b]区间的最大值时答案就是max(d[a,k], d[b-2^k+1,k]),其中k是满足2^k<=b-a+1(即长度)的最大的k,即k=[ln(b-a+1)/ln(2)]。
d的求法可以用动态规划,d[i, j]=max(d[i, j-1],d[i+2^(j-1), j-1])。

看一下ST算法是怎么实现的(以最大值为例):
   首先是预处理,用一个DP解决。设a是要求 区间 最值的 数列 ,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,DP的状态、初值都已经有了,剩下的就是 状态转移方程 。我们把f[i,j](j≥1)平均分成两段(因为j≥1时,f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和6,8,1,2这两段。f就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-1),j-1])。
接下来是得出最值,也许你想不到计算出f有什么用处,一般要想计算max还是要O(logn),甚至O(n)。但有一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^n的区间(保证有f对应)。直接给出表达式:
k:=trunc(ln(r-l+1)/ln(2));
ans:=max(F[l,k],F[r-2^k+1,k]);
这样就计算了从l开始,长度为2^k的区间和从r-2^k+1开始长度为2^k的区间的最大值(表达式比较繁琐,细节问题如加1减1需要仔细考虑),二者中的较大者就是整个区间[l,r]上的最大值。

#include <iostream>
#include <cstdio>
#include <cmath>
#include<algorithm>
#define MN 50005
using namespace std;
int mi[MN][17],mx[MN][17],w[MN];
int n,q;
void rmqinit()
{
  int i,j,m;
  for(i=1;i<=n;i++){mi[i][0]=mx[i][0]=w[i];}
  int m = int(trunc(log2(n)));
  for(i=1;i<=m;i++)
  {
    for(j=n;j>=1;j--)
    {
      mx[j][i]=mx[j][i-1];
      if(j+(1<<(i-1))<=n)
        mx[j][i]=max(mx[j][i],mx[j+(1<<(i-1))][i-1]);
      mi[j][i]=mi[j][i-1];
      if(j+(1<<(i-1)<=n))
        mi[j][i]=min(mi[j][i],mi[j+(1<<(i-1))][i-1]);
    }
  }
}

int rmqmin(int l,int r)
{
  int m=int(trunc(log2(r-l+1)));
  return min(mi[l][m],mi[r-(1<<m)+1][m]);
}

int rmqmax(int l,int r)
{
  int m=int(trunc(log2(r-l+1)));
  return max(mx[l][m],mx[r-(1<<m)+1][m]);
}

int main()
{
  cin>>n>>q;
  for(int i=1;i<=n;i++)
    scanf("%d",&w[i]);//cin>>w[i];
  rmqinit();
  int l,r;
  for(int i=1;i<=q;i++)
  {
    scanf("%d%d",&l,&r);//cin>>l>>r;
    printf("%d %d\n",rmqmax(l,r),rmqmin(l,r));
    //cout<<rmqmax(l,r)<<" "<<rmqmin(l,r)<<endl;
  }
  while(cin>>n)
  return 0;
}





练练手.HDU3486
题目链接: Click Here~

题目分析:
   题目重述,题目说给出一个老板要面试N个人,且这N个人,每个人都有自己的能力值。但是他没有那么多的时间。因此,他决定将这N个人按原来报道的顺序将他们分成m组。而剩下的人由于来的晚,所以,就直接不给他们面试的机会了。题目问,分别从m组中挑选出N/m个人。且boss希望员工在m组中每组的最高能力值的总和不小于k。而要你求出至少要分成几组?

算法分析:
    朴素的算法,求出组数是从1~N的遍历,在求出这1~N组中每组的人的最大能力值。这明显超时。但是哪里可以优化呢?我们发现程序中只有两处核心;一,求组数。二,求每组中人的最大能力值。只要解决了这个两个问题,当然就可以解决了超时的问题。
    如何,优化组数呢?我们可以想最好的情况是没跟人的能力值都一样的,那么此时就是组数的下界。那么,我们就可以求出N个人中最大能力值(maxv)是多少。而最小组数就是k/maxv了(想想为什么?)而上界就是N组.‘
   如何,优化每组中人的最大能力值呢?显然就是我们开篇讲的RMQ.

 然后呢,这道题的数据有问题。可以用二分,但是本质上着N个人的能力值并不存在任何关系,因此根本就不能用二分。还有题目描述也很恶心。到底是保证组数最小呢?还是人数最小呢?这要自己猜吗?Are you kidding me?

#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const int N = 2e5 + 5;
int n,dp[N][20];

void RMQ_init()
{
    int m = int(trunc(log2(n)));
//    int m = (int)(log10(n*1.0)/log10(2.0));
    for(int j = 1;j <= m;++j)
      for(int i = 1;i+(1<<j)-1 <= n;i++)
        dp[i][j] = max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int RMQ(int L,int R)
{
//    int k = (int)(log10(R-L+1)*1.0/log10(2.0));
    int k = int(trunc(log2(R-L+1)));
    return max(dp[L][k],dp[R-(1<<k)+1][k]);
}
int main()
{
    int k;
    while(scanf("%d%d",&n,&k),(n>=0&&k>=0))
    {
        int sum = 0,maxv = 0;
        for(int i = 1;i <= n;++i)
        {
            scanf("%d",&dp[i][0]);
            sum += dp[i][0];
            maxv = max(maxv,dp[i][0]);
        }
        if(sum <= k){
           puts("-1");
           continue;
        }
        RMQ_init();
        int ans = n,st = k/maxv;
        if(!st) st++; //注意出现除0的情况---->Runtime Error!!!!!!!!!!!!!!
        for(int i = st;i < n;++i)  //枚举组数
        {
            int seg,s = 0;
            seg = n/i;            //可以分成几个区间
            for(int j = 1;j <= i;j++) //在i个区间内,各个区间的起点和终点
            {
                s += RMQ((j-1)*seg+1,j*seg);
                if(s > k)break;
            }
            if(s > k){
               ans = i;
               break;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}







                         AMagic Lamp



题目链接:Click Here~

题意解析:

    题目要求,给出一个字符串。让你在删除m个字符之后,求剩下的数组成的最小数是多少。(同理,求剩下的数组成的最大数也是同样的解法)

思路解析:

显然,要删除m个数则原字符串比剩下n-m个(原字符串长度为n.则,我们知道当两个数的位数相同的时候,就要比较他的首位。

比如,19992000.因此,我们要尽量的使首位变小。而这只要在一个区间中找出最小的那个就好了。而问题有出现了,要怎么确定去区间呢?显然,我们在找第一位的时候,后面肯定要至少剩下n-m-1个数。且我们假设我们找到的第一位索引为i1。则第二位的区间可以很容易的确定是从i+1为起点后面至少剩下n-m-2个的区间内。同理,后面的都是相同的道理。

    而我们知道区间求极值,我们又可以使用RMQ求得最值。而当运用RMQ的时候我们又可以从逆向思维来考虑。当我们找第一位的时候既然后面要剩下n-m-1个,那不是说明第一位的最值一定是在[0,m]内,第二个在[i1,m+1],ect?这是显然的。所以,我们可以轻松的运用RMQ求出每个区间的最值是多少。



#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

const int N = 1e3 + 5;
int n,pos[N][20];
char str[N];
void RMQ_init()
{
    for(int i = 0;i <= n;++i) pos[i][0] = i;
    int m = int(trunc(log2(n)));
    for(int j = 1;j <= m;++j)
      for(int i = 0;i +(1<<j)-1 <= n;++i)
      {
          int s1 = pos[i][j-1];
          int s2 = pos[i+(1<<(j-1))][j-1];
          pos[i][j] = str[s1]<=str[s2]?s1:s2;
      }
}
int RMQ(int L,int R)
{
    int m = int(trunc(log2(R-L+1)));
    int s1 = pos[L][m];
    int s2 = pos[R-(1<<m)+1][m];
    return str[s1] <= str[s2]?s1:s2;
}
int main()
{
    int m;
    while(~scanf("%s%d",str,&m))
    {
        n = strlen(str); // printf("str ---> %s   n -- > %d\n",str,n);
        RMQ_init();
//        char res[N];
        bool first = true;
        int index,idx = 0,j = m;
//        memset(res,'\0',sizeof(res));
        for(int i = 1;i <= n-m;++i)
        {
            index = RMQ(idx,j);
            j++;
            if(first&&str[index]!='0'){
               first = false;
               putchar(str[index]);
            }else if(!first)
            {
                putchar(str[index]);
            }
            idx = index+1;
        }
        if(first) putchar('0');
        putchar('\n');
    }
    return 0;
}

 

Max Sum of Max-K-sub-sequence


     也可以运用单调队列。Click Here~




                                



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值