Escape
题目链接:click Here~
题目分析:
在世界末日到来的时候,有n个地球人想跑到星星上去生活。而每个星星是不同的,且每个星星能容纳的人数是有限的。现在要求你求出这n个人能不能全部跑到星星上。一段时间不能跟某人聊天了,感觉很伤心。
算法分析:
一开始直接,上手网络流求解。冏,后来编译器直接奔溃了,一看提示才发现不能直接暴力。因为数据n太大了,所以要另外想办法,可惜我没想到啊。后来,看了别人的才知道是二进制压缩(其实我也没完全懂)。自己可以看LRJ的白书,如果不是搞ACM的就算了,那个老师肯定不会教的。
因为是网络流所以我们可以很显然的想到是否能用到二分匹配呢?显然这题是可以得。其实就是二分图中的完美匹配,用KM算法就好了。因为这题数据特殊,所以用一般的匈牙利算法就可以过。但是话说我交了20+都没过,冏。后来就懒的在交了。感兴趣的自己可以去找别人的博客。
#include <iostream>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int MAXN = 1e4,INF = ~0U >> 1;
struct Edge{
int from,to,cap,flow;
Edge(int f,int t,int c,int _f)
:from(f),to(t),cap(c),flow(_f){}
};
class MF{
public:
void Init(int n,int m);
bool Solve(int n,int m);
void AddEdge(int from,int to,int cap);
bool BFS();
int DFS(int u,int a);
int Maxflow();
int Read();
private:
vector<Edge> edges;
vector<int> G[MAXN];
int n,s,t;
int d[MAXN],cur[MAXN];
bool vst[MAXN];
};
void MF::Init(int n,int m)
{
s = 0; t = (1<<m)+m+1;
for(int i = 0;i <= t;++i)
G[i].clear();
edges.clear();
}
inline void MF::AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,0));
edges.push_back(Edge(to,from,0,0));
int sz = edges.size();
G[from].push_back(sz-2);
G[to].push_back(sz-1);
}
bool MF::BFS()
{
memset(vst,0,sizeof(vst));
vst[s] = true; d[s] = 0;
queue<int> Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front();
Q.pop();
for(int i = 0;i < (int)G[u].size();++i){
Edge& e = edges[G[u][i]];
if(!vst[e.to]&&e.cap > e.flow){
vst[e.to] = true;
d[e.to] = d[u]+1;
Q.push(e.to);
}
}
}
return vst[t];
}
int MF::DFS(int u,int a)
{
if(u==t||a==0)
return a;
int f,flow = 0;
for(int& i = cur[u];i < (int)G[u].size();++i){
Edge& e = edges[G[u][i]];
if(d[e.to]==d[u]+1&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if(a == 0)break;
}
}
return flow;
}
int MF::Maxflow()
{
int flow = 0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
bool MF::Solve(int n,int m)
{
Init(n,m);
int k,f,ope[MAXN]={0};
for(int i = 1;i <= n;++i){
k = 0;
for(int j = 0;j < m;++j){
f = Read();
if(f) k += (1<<j);
}
ope[k]++;
}
for(int i = 1;i <= m;++i){
f = Read();
AddEdge((1<<m)+i,t,f);
}
for(int i = 0;i < (1<<m);++i){
if(ope[i]==0)continue;
AddEdge(s,i+1,ope[i]);
for(int j = 0;j < m;++j){
k = 1<<j;
if(i&k) AddEdge(i+1,j+(1<<m)+1,ope[i]);
}
}
return n <= Maxflow();
}
int MF::Read()
{
char ch = getchar();
while(!isdigit(ch)) ch = getchar();
int sum = 0;
while(isdigit(ch)){
sum *= 10;
sum += ch-'0';
ch = getchar();
}
return sum;
}
int main()
{
int n,m;
MF cf;
while(~scanf("%d%d",&n,&m)){
if(cf.Solve(n,m))
puts("YES");
else
puts("NO");
}
return 0;
}