poj Optimal Milking

                                                     Optimal Milking

 

题目:

   有K个机器,C只牛。要求求出最所有牛到各个产奶机的最短距离。给出一个C+K的矩阵,表示各种标号间的距离。

而每个地方最多有M只牛。

 

算法分析:

   二分+最短路+网络流

想法难以想到。我是看解题报告的思路。然后,自己上了手。开始wrong 了3次。后来各种该,无意的一个更改就AC了。无语勒。。。。

wrong 在了,网络流建图的时候只能是机器和奶牛之间的距离关系。而奶牛跟奶牛或者机器跟机器不要建边。当时脑残了!!!!

#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;

const int INF = 1 << 20;
const int MAXN = 1000;

struct Edge{
   int from,to,cap,flow,cost;
   Edge(){};
   Edge(int _from,int _to,int _cap,int _flow)
       :from(_from),to(_to),cap(_cap),flow(_flow){};
};
vector<Edge> edges;
vector<int> G[MAXN];
int cur[MAXN],d[MAXN];
bool vst[MAXN];
int src,sink;
int dist[MAXN][MAXN];
int K,C,M,V;

void init(){
    src = V + 1; sink = src + 1;
    for(int i = 0;i <= sink;++i)
        G[i].clear();
    edges.clear();
}

void flody(){
    for(int k = 0;k < V;++k)
     for(int i = 0;i < V;++i)
       for(int j = 0;j < V;++j)
         if(dist[i][j] > dist[i][k] + dist[k][j])
           dist[i][j] = dist[i][k] + dist[k][j];
//    for(int i = 0;i < V;++i){
//        for(int j = 0;j < V;++j)
//           printf("%d ",dist[i][j]);
//        puts("");
//    }
}

void addEdge(int from,int to,int cap){
    edges.push_back(Edge(from,to,cap,0));
    edges.push_back(Edge(to,from,0,0));
    int sz = edges.size();
    G[from].push_back(sz - 2);
    G[to].push_back(sz - 1);
}

void build(int limit){
    init();

    for(int i = K;i < V;++i){  // 奶牛与源点
        addEdge(src,i,1);
    }

    for(int i = 0;i < K;++i){ //机器与汇点
        addEdge(i,sink,M);
    }
   
   //注意---> i = K!!! j < K!!!!
    for(int i = K;i < V;++i){  //奶牛与机器的连接
        for(int j = 0;j < K;++j){
            if(dist[i][j] <= limit){
                addEdge(i,j,1);
            }
        }
    }

}

bool BFS(){
    memset(vst,0,sizeof(vst));
    queue<int> Q;
    Q.push(src);
    d[src] = 0;
    vst[src] = 1;

    while(!Q.empty()){
        int x = Q.front(); Q.pop();
        for(int i = 0;i < (int)G[x].size();++i){
            Edge& e = edges[G[x][i]];
            if(!vst[e.to] && e.cap > e.flow){
                vst[e.to] = 1;
                d[e.to] = d[x] + 1;
                Q.push(e.to);
            }
        }
    }

    return vst[sink];
}

int DFS(int x,int a){
    if(x == sink||a == 0)
        return a;

    int flow = 0,f;
    for(int& i = cur[x];i < (int)G[x].size();++i){
        Edge& e = edges[G[x][i]];
        if(d[e.to] == d[x] + 1&&(f = DFS(e.to,min(a,e.cap - e.flow))) > 0){
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0) break;
        }
    }
    return flow;
}

int maxFlow(){
    int flow = 0;
    while(BFS()){
        memset(cur,0,sizeof(cur));
        flow += DFS(src,INF);
    }
    return flow;
}

bool Check(int mid){
    build(mid);
    int flow = maxFlow();       //cout << "flow : " << flow << endl;

    return flow == C;
}

void solve(){
    flody();

    int lb = -1,ub = INF + 100;
    while(ub - lb > 1){
        int mid = (lb + ub) / 2;
        if(Check(mid))
            ub = mid;
        else
            lb = mid;

       //cout << "mid: " << mid << " lb: " << lb << "  ub: " << ub << endl;
    }

    printf("%d\n",ub);
}

int main()
{
  //  freopen("Input.txt","r",stdin);

    while(~scanf("%d%d%d",&K,&C,&M)){
        V = K + C;
        int x;
        for(int i = 0;i < V;++i){
            for(int j = 0;j < V;++j){
                scanf("%d",&x);
                dist[i][j] = (x == 0 ? INF : x);
            }
            dist[i][i] = 0;
        }

        solve();
    }
    return 0;
}


 

还有一种是多重匹配,,还没写。写完补上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值