Kaka's Matrix Travels
题目:
给出一个矩阵,求只能向下或者向右的情况下能得到的最大和。一般的是指遍历一次,而这个是可以重复走K次。每经过一次后就把该点设为0.求最大和。
算法:
想到了用网络流做。但是建图没什么自信。看了别人的才敢开始建。建图其实也不难,就是有一个拆点处理,因为,一个点走一次后其上的值就为0了。这个处理很巧妙!就是拆点后建立两条边,一条是有价值的边,一条是没价值,但是可以通过的边。因为,虽然该点没价值,但是有可能其他点要通过它,这就是这题的巧妙之处!!!思抠以。。。。。
给出一个分析的很好的别人画的建图模型。
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 1 << 25;
const int MAXN = 5000 + 10;
//
//费用流
struct Edge{
int from,to,cap,flow,cost;
Edge(){};
Edge(int _from,int _to,int _cap,int _flow,int _cost)
:from(_from),to(_to),cap(_cap),flow(_flow),cost(_cost){};
};
vector<Edge> edges;
vector<int> G[MAXN];
bool inq[MAXN];
int d[MAXN];
int p[MAXN];
int a[MAXN];
int N,K,V,src,sink;
/
int matrix[MAXN][MAXN];
void init(){
src = N * N * 2; sink = src + 1;
for(int i = 0; i < sink + 1;++i)
G[i].clear();
edges.clear();
}
void addEdge(int from,int to,int cap,int cost){
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
int sz = edges.size();
G[from].push_back(sz - 2);
G[to].push_back(sz - 1);
}
bool spfa(int s,int t,int& flow,int& cost){
for(int i = 0;i <= sink;++i) d[i] = INF;
fill(inq,inq + V,false);
d[s] = 0; inq[s] = true; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = false;
for(int i = 0;i < (int)G[u].size();++i){
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u],e.cap - e.flow);
if(!inq[e.to]){
inq[e.to] = true;
Q.push(e.to);
}
}
}
}
if(d[t] == INF)
return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while(u != s){
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int minCost(){
V = sink + 1;
int flow = 0,cost = 0;
while(spfa(src,sink,flow,cost));
return cost;
}
int main()
{
// freopen("Input.txt","r",stdin);
while(~scanf("%d%d",&N,&K)){
init();
for(int i = 0;i < N;++i){
for(int j = 0;j < N;++j){
scanf("%d",&matrix[i][j]);
}
}
V = N*N;
int t;
for(int i = 0;i < N;++i){ //拆点
for(int j = 0;j < N;++j){
t = i * N + j;
addEdge(t,t + V,1,-matrix[i][j]); //要这点的价值
addEdge(t,t + V,INF,0); //其他点可以从这点过
}
}
int t1,t2;
for(int i = 0;i < N - 1;++i){ //向下建边
for(int j = 0;j < N;++j){
t1 = i * N + j;
t2 = (i + 1) * N + j;
addEdge(t1 + V,t2,INF,0);
}
}
for(int i = 0;i < N;++i){ //向右建边
for(int j = 0;j < N - 1;++j){
t1 = i * N + j;
t2 = i * N + j + 1;
addEdge(t1 + V,t2,INF,0);
}
}
addEdge(src,0,K,0); //超级源点
addEdge(2*V - 1,sink,K,0); //超级汇点
printf("%d\n",-minCost());
}
return 0;
}