Fibonacci 题目汇总

本文详细介绍了Fibonacci数列的性质,特别突出了其通项公式,并提供了多种高效计算该数列元素的方法,包括直接使用公式、利用对数运算等技巧。此外,文章还探讨了Fibonacci数列在计算机科学中的应用及其实现细节。

   原先总以为Fibonacci只能以快速矩阵幂和循环节求出,但随着学习的深入才知道,原来Fibonacci是属于数论类,而且可以用公式直接算出,而无需一下瞎推和暴力。

     FIBONACCI 公式:

                               这个数列是意大利中世纪数学家斐波那契在<;算盘全书>;中提出的,这个级数的通项公式,除了具有     a(n+2) =an+a(n+1)的性质外,还可以证明通项公式为:an=(1/√5)*{[(1+√5)/2]^n-[(1-√5)/2]^n}(n=1,2,3.....)  `````

            log(Fibonacci[n])=[(-0.5*log(5.0))+((double)n)*log(sqrt(5.0)+1.0)/2.0]/log(10.0);

        或者 fib=-0.5*log(5.0)/log(10.0)+((double)n)*log(g)/log(10.0)

        Fibobacci[n]~~pow(10.0,log(Fibonacci[n]))*10^k;(这里~~表示约等于,10^k表示需取多少位,用k控制)

        或者

         double  k=fib-floor(fib);
         double  ans=pow(10.0,k);
         while(ans<1000)ans*=10;

HDU

     Fibonacci 1568

     Number Sequence 1005

    Sibonacci Numbers 1893

  

    

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值