自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

转载 TF-IDF教程

转自:http://blog.csdn.net/sangyongjia/article/details/52440063 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,...

2017-09-04 21:01:24

阅读数 544

评论数 0

转载 jieba教程

转载自:http://blog.csdn.net/reims2046/article/details/72869337 整体介绍 jieba 基于Python的中文分词工具,安装使用非常方便,直接pip即可,2/3都可以,功能强悍,博主十分推荐  github:https:/...

2017-09-04 20:50:28

阅读数 1903

评论数 0

转载 jieba分词快速入门 自然语言处理

jieba "结巴"中文分词:做最好的Python中文分词组件 "Jieba"  Feature 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析; 全模式,把句子中所有的可以成词的词语都扫描出来, 速...

2017-09-04 20:28:43

阅读数 1162

评论数 0

转载 3.1. Cross-validation: 评估 estimator 的性能

1.13. 特征选择(Feature selection) sklearn.feature_selection 模块中的类能够用于数据集的特征选择/降维,以此来提高预测模型的准确率或改善它们在高维数据集上的表现。 1.13.1. 移除低方差的特征(Removing features wit...

2017-08-11 21:08:51

阅读数 1295

评论数 0

转载 scikit-learn数据预处理

4.3. 数据预处理 ``sklearn.preprocessing``包为用户提供了多个工具函数和类,用于将原始特征转换成更适于项目后期学习的特征表示。 4.3.1. 标准化、去均值、方差缩放(variance scaling) 数据集的** 标准化 对于在scikit中的...

2017-08-11 20:30:08

阅读数 303

评论数 0

转载 1.13. 特征选择(Feature selection)

1.13. 特征选择(Feature selection) sklearn.feature_selection 模块中的类能够用于数据集的特征选择/降维,以此来提高预测模型的准确率或改善它们在高维数据集上的表现。 1.13.1. 移除低方差的特征(Removing featur...

2017-08-11 17:40:31

阅读数 543

评论数 0

转载 1.12. Multiclass and multilabel algorithms 多分类多标签算法

1.12. Multiclass and multilabel algorithms Warning   All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t ...

2017-08-11 17:30:15

阅读数 5605

评论数 0

转载 Adaboost

转自:http://blog.csdn.net/dream_angel_z/article/details/46764845 1.基于数据集多重抽样的分类器 - AdaBoost 优点 泛化错误率低,易编码,可以应用在大部分分类器上,无...

2017-08-10 20:54:03

阅读数 297

评论数 0

转载 梯度树提升算法GBRT

本文由拾毅者发布于http://blog.csdn.net/dream_angel_z/article/details/48085889,转载请注明出处,如果有问题,请联系:csu.ldw@csu.edu.cn Introduction 决策树这种算法有着很多良好的特性,比如说训练时间...

2017-08-10 20:42:04

阅读数 1328

评论数 0

转载 1.11. 集成方法

1.11. 集成方法 集成方法结合不同分类器的预测结果, 这些分类器分别来自于不同的学习算法, 相比于单一分类器以提高分类器的泛化/健壮性。 集成方法通常分为两类: 在 一般方法 中,方法的原理是使用若干个独立的分类器, 然后取这若干个分类器的平均结果作为集合方法结果。 一般情况下,集成...

2017-08-10 19:35:19

阅读数 573

评论数 1

转载 集成学习

转自:http://www.cnblogs.com/wxquare/p/5440664.html 集成学习方法         集成学习是机器学习算法中非常强大的工具,有人把它称为机器学习中的“屠龙刀”,非常万能且有效,在各大机器学习、数据挖掘竞赛中使用非常广泛。它的思...

2017-08-09 18:16:55

阅读数 233

评论数 0

转载 决策树原理

转载自:http://www.cnblogs.com/bourneli/archive/2013/03/15/2961568.html 算法原理 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大...

2017-08-08 20:16:07

阅读数 662

评论数 0

转载 1.10. Decision Trees

1.10. Decision Trees Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The goal is to cr...

2017-08-08 16:44:38

阅读数 317

评论数 0

转载 朴素贝叶斯原理

转载自:http://www.cnblogs.com/leoo2sk/archive/2010/09/17/naive-bayesian-classifier.html 1.1、摘要       贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶...

2017-08-07 20:36:33

阅读数 216

评论数 0

转载 1.9. 朴素贝叶斯

1.9. 朴素贝叶斯 朴素贝叶斯方法是一系列有监督学习的方法,这些方法基于对贝叶斯理论的应用,即简单(naive)的假设 每对特征之间都相互独立。给定类变量  (这里一个样本仅属于一类) 和一个相互独立的特征向量  到 ,贝叶斯定理可得到如下关系: 使用简单(naive)的...

2017-08-07 20:22:58

阅读数 394

评论数 0

转载 1.7. 高斯过程(Gaussian Processes)

针对机器学习的高斯过程(Gaussian Processes for Machine Learning,即 GPML) 是一个通用的监督学习方法,主要被设计用来解决 回归 问题。 它也可以扩展为 概率分类(probabilistic classification),但是在当前的实现中,这只是 回归...

2017-08-07 19:54:37

阅读数 16283

评论数 1

转载 1.6. 最邻近算法

最邻近法 主要是一种非监督或基于临近的监督学习方法. 非监督最邻近法是许多其他学习算法的基础,特别是流行学习方法及谱聚类方法. 基于临近的监督分类主要在一下两方面具有优势: 具有离散标签数据的`分类`和 连续标签数据的`回归`.. The principle behind nearest...

2017-08-07 18:18:55

阅读数 2786

评论数 0

转载 scikit-learn 1.5. Stochastic Gradient Descent

1.5. 随机梯度下降 Stochastic Gradient Descent (SGD) 是一种简单但又非常高效的方式判别式学习方法,比如凸损失函数的线性分类器如Support Vector Machines 和 Logistic Regression. 虽然SGD已经在机器学习社区出现很...

2017-08-07 17:58:37

阅读数 775

评论数 0

原创 kaggle:code 猫狗识别 图像识别TensorFlow图像预处理

#coding:utf8 import matplotlib.pyplot as plt import numpy as np import os import tensorflow as tf #import cv2 TRAIN_DIR = './wtrain/' TEST...

2017-07-22 11:53:26

阅读数 727

评论数 0

转载 TensorFlow图像数据预处理

TensorFlow 图像数据预处理及可视化 绿萝123 5 个月前 注:文章转自《慢慢学TensorFlow》微信公众号 图像是人们喜闻乐见的一种信息形式,“百闻不如一见”,有时一张图能胜千言万语。图像处理是利用计算机将数值化的图像进行一定(线性或非线性)变换获得更好效果...

2017-07-21 11:51:40

阅读数 2332

评论数 0

转载 kaggle Code :树叶分类 sklearn分类器应用

Which Classifier is Should I Choose? This is one of the most import questions to ask when approaching a machine learning problem. I find it easier t...

2017-07-20 23:25:06

阅读数 1053

评论数 0

转载 kaggle Code :手写识别 TensorFlow

TensorFlow deep NN A high-level tutorial into Deep Learning using MNIST data and TensorFlow library. by @kakauandme and @thekoshkina Accuracy: 0...

2017-07-20 17:21:07

阅读数 934

评论数 0

转载 Kaggle - Facebook recruiting 时间地点处理方法

Kaggle - Facebook recruiting¶ In [1]: import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from scipy...

2017-07-19 23:06:35

阅读数 230

评论数 0

转载 kaggle Code :House Prices: Advanced Regression Techniques 回归

The most difficult thing in life is to know yourself' This quote belongs to Thales of Miletus. Thales was a Greek/Phonecian philosopher, mathem...

2017-07-19 22:48:01

阅读数 1565

评论数 0

转载 kaggle Code : Titanic: Machine Learning from Disaster 分类

# Imports # pandas import pandas as pd from pandas import Series,DataFrame # numpy, matplotlib, seaborn import numpy as np import matplotlib.pyplot...

2017-07-19 21:37:33

阅读数 551

评论数 0

原创 TensorFlow手写识别

#coding:utf8 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf import numpy as np mnist = input_data.read_data_sets...

2017-07-18 18:48:10

阅读数 230

评论数 0

转载 scikit-learn 1.4. Support Vector Machines

1.4. Support Vector Machines Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outlier...

2017-07-17 17:55:41

阅读数 449

评论数 0

转载 支持向量机SVM基本理论

转自:http://www.cnblogs.com/steven-yang/p/5658362.html 基本概念 SVM - Support Vector Machine。支持向量机,其含义是通过支持向量运算的分类器。其中“机”的意思是机器,可以理解为分类器。 什么是支持向量呢...

2017-07-17 17:47:18

阅读数 445

评论数 0

转载 scikit-learn 1.3. Kernel ridge regression

核岭回归是结合岭回归(线性最小二乘L2范数正则化)与内核的技巧。因此,它在各自的内核和数据中学习空间中的线性函数。对于非线性核,这对应于原始空间中的非线性函数。 学习KernelRidge模式的形成是支持向量回归(SVR)相同。然而,使用不同的损失函数:KRR采用平方误差损失而支持向量回...

2017-07-17 17:19:51

阅读数 1597

评论数 0

转载 核岭回归 Kernel Ridge Regression

转自:http://www.bubuko.com/infodetail-781832.html Kernel Ridge Regression 上次介绍的表示定理告诉我们,如果我们要处理的是有L2的正则项的线性模型,其最优解是数据zn的线性组合。我们可以将这样的线性模型变成Kernel...

2017-07-17 17:17:17

阅读数 7966

评论数 0

转载 scikit-learn linearRegression 1.2 线性与二次判别分析

线性判别分析(LDA) (discriminant_analysis.LinearDiscriminantAnalysis) 和二次 判别分析(QDA) (discriminant_analysis.QuadraticDiscriminantAnalysis) 是两种经典的 分类器, 正如...

2017-07-14 00:30:03

阅读数 521

评论数 0

转载 线性与二次判别分析

转自:http://www.dataivy.cn/blog/%E4%BA%8C%E6%AC%A1%E5%88%A4%E5%88%AB%E5%88%86%E6%9E%90quadratic-discriminant-analysis_qda/ 二次判别分析Quadratic Discrim...

2017-07-14 00:24:12

阅读数 5139

评论数 0

转载 线性判别分析LDA

1. 问题      之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。      比如回到上次提出的文档中含有“l...

2017-07-14 00:03:09

阅读数 194

评论数 0

转载 感知机Perception原理

转载自:http://blog.csdn.net/dream_angel_z/article/details/48915561 在机器学习中,感知机(perceptron)是二分类的线性分类模型,属于监督学习算法。输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机对应于输入空...

2017-07-12 12:27:54

阅读数 244

评论数 0

转载 批量梯度下降和随机梯度下降

转自:http://www.cnblogs.com/walccott/p/4957098.html 梯度下降与随机梯度下降 梯度下降法先随机给出参数的一组值,然后更新参数,使每次更新后的结构都能够让损失函数变小,最终达到最小即可。在梯度下降法中,目标函数其实可以看做是参数的函数,因...

2017-07-12 12:10:59

阅读数 2917

评论数 0

转载 scikit-learn linearRegression 1.1.11 随机梯度下降

1.5. 随机梯度下降 Stochastic Gradient Descent (SGD) 是一种简单但又非常高效的方式判别式学习方法,比如凸损失函数的线性分类器如 Support Vector Machines 和 Logistic Regression. 虽然SGD已经在机器学习社区...

2017-07-12 11:59:40

阅读数 820

评论数 0

转载 scikit-learn linearRegression 1.1.10 逻辑回归

逻辑回归形如其名,是一个线性分类模型而不是回归模型。逻辑回归在文献中也称为logit回归、最大熵分类(MaxEnt) 或者 log-linear classifier。 在这个模型中,描述单次可能结果输出概率使用 logistic function 来建模。 scikit-learn中逻...

2017-07-11 23:49:36

阅读数 1399

评论数 0

转载 逻辑回归基本原理

转自:http://blog.csdn.net/pakko/article/details/37878837 什么是逻辑回归? Logistic回归与多重线性回归实际上有很多相同之处,最大的区别就在于它们的因变量不同,其他的基本都差不多。正是因为如此,这两种回归可以归于同一...

2017-07-11 23:47:36

阅读数 259

评论数 0

转载 scikit-learn linearRegression 1.1.9 贝叶斯回归

1.1.9. 贝叶斯回归 可以在估计过程中使用贝叶斯回归技术包含正则化参数:正则化参数不是硬编码设置的而是手动调节适合数据的值 可以通过在模型的超参数上引入 uninformative priors `Ridge Regression`_ 中  使用的正则化项等价于在一个参数为 ...

2017-07-11 23:18:02

阅读数 2767

评论数 0

转载 贝叶斯岭回归理论

转自:http://blog.csdn.net/dark_scope/article/details/8558244 .引入      贝叶斯线性回归的引入主要是在最大似然估计中很难决定模型的复杂程度,ridge回归加入的惩罚参数其实也是解决这个问题的,同时可以采用的方法还有对数据进行...

2017-07-11 23:10:11

阅读数 4500

评论数 0

提示
确定要删除当前文章?
取消 删除