数列第N项 20 (矩阵 + 快速幂)

题目: 传送门
题意: 已知数列递推公式为
a n = ( 3 a n − 1 + 4 a n − 2 )   m o d   1 e 9   +   7 a_n = (3a_{n-1} + 4a_{n-2}) ~mod ~1e9 ~+~7 an=(3an1+4an2) mod 1e9 + 7
现在给你a1和a2,要求 a n a_n an
思路:
看如下矩阵乘法:
( a n a n − 1 ) = ( 3 4 1 0 ) ∗ ( a n − 1 a n − 2 ) \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix} * \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix} (anan1)=(3140)(an1an2)
可以一直递推,得到:
( a n a n − 1 ) = ( 3 4 1 0 ) n − 1 ∗ ( a 2 a 1 ) \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}^{n-1} * \begin{pmatrix} a_2 \\ a_1 \end{pmatrix} (anan1)=(3140)n1(a2a1)
如果
( 3 4 1 0 ) n − 1 = ( A B C D ) \begin{pmatrix} 3 & 4 \\ 1 & 0 \end{pmatrix}^{n-1} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} (3140)n1=(ACBD)
a n a_n an = A ∗ a 2 + B ∗ a 1 A*a_2 + B*a_1 Aa2+Ba1
由于n到了1e12,所以用快速幂
Code:

#pragma GCC optimize(2)
#include<iostream>
using namespace std;

typedef long long ll;
const ll mod = 1000000007;
struct matrix {
	ll a, b, c, d;
	matrix() {}
	matrix (ll aa, ll bb, ll cc, ll dd) {
		a = aa;
		b = bb;
		c = cc;
		d = dd;
	}
	matrix operator * (const matrix& x) {
		matrix tmp;
		tmp.a = a*x.a + b*x.c;
		tmp.b = a*x.b + b*x.d;
		tmp.c = c*x.a + d*x.c;
		tmp.d = c*x.b + d*x.d;
		return tmp;
	}
	matrix operator % (ll k) {
		matrix tmp(a%k, b%k, c%k, d%k);
		return tmp;
	}
};
matrix qpow(matrix a, ll n) {
	matrix ans(1,0,0,1);
	matrix t = a;
	while (n > 0) {
		if (n & 1) {
			ans = ((ans)%mod * (t%mod)) % mod;
		}
		t = ((t%mod) * (t%mod)) % mod;
		n >>= 1;
	}
	return ans % mod;
}
int main()
{
	ll n, a1, a2;
	cin>>n>>a1>>a2;
	matrix a(3,4,1,0), c;
	c = qpow(a, n - 2);
	//cout<<c.a<<" "<<c.b<<endl<<c.c<<" "<<c.d<<endl;
	cout<<(c.a * (a2%mod) + c.b * (a1 % mod)) % mod<<endl;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
斐波那契数列可以用矩阵快速幂的方法求解,时间复杂度为O(logn)。下面是使用矩阵快速幂求解斐波那契数列第n的C++代码。 ```c++ #include <iostream> #include <vector> using namespace std; // 矩阵乘法 vector<vector<long long>> matrixMultiply(vector<vector<long long>>& a, vector<vector<long long>>& b) { int m = a.size(); int n = b[0].size(); int l = b.size(); vector<vector<long long>> c(m, vector<long long>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < l; k++) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } // 矩阵快速幂 vector<vector<long long>> matrixPow(vector<vector<long long>>& a, int n) { vector<vector<long long>> ans = {{1, 0}, {0, 1}}; // 单位矩阵 while (n > 0) { if (n & 1) ans = matrixMultiply(ans, a); a = matrixMultiply(a, a); n >>= 1; } return ans; } // 斐波那契数列第n long long fib(int n) { if (n == 0) return 0; vector<vector<long long>> a = {{1, 1}, {1, 0}}; vector<vector<long long>> b = {{1}, {0}}; vector<vector<long long>> c = matrixMultiply(matrixPow(a, n - 1), b); return c[0][0]; } int main() { int n; cout << "请输入n的值: "; cin >> n; cout << "斐波那契数列第" << n << "的值为: " << fib(n) << endl; return 0; } ``` 该方法的思路是将斐波那契数列的递推式转化为矩阵形式,即 ``` | F(n) | | 1 1 | | F(n-1) | | F(n-1) | = | 1 0 | * | F(n-2) | ``` 然后通过矩阵快速幂的方式求出矩阵A的n-1次方,再用矩阵A的n-1次方乘以向量B,得到结果矩阵C,矩阵C的第一行第一列就是斐波那契数列的第n的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值