Spark
Spark
_lizhiqiang
种一棵树最好的时间是十年前,其次是现在。
展开
-
Spark 的 Shuffle 看不懂?多图解析!
大多数 Spark 作业的性能主要就是消耗在了 shuffle 环节,因为该环节包含了大量的磁盘 IO、序列化、网络数据传输等操作。因此,如果要让作业的性能更上一层楼,就有必要对 shuffle 过程进行调优。但是也必须提醒大家的是,影响一个 Spark 作业性能的因素,主要还是代码开发、资源参数以及数据倾斜,shuffle 调优只能在整个 Spark 的性能调优中占到一小部分而已。因此大家务必把握住调优的基本原则,千万不要舍本逐末。下面我们就给大家详细讲解 shuffle 的原理,以及相关参数的说明,同时原创 2020-07-09 13:08:23 · 384 阅读 · 0 评论 -
Scala flatmap() 我该怎么写?画图帮你搞懂 faltten 和 flatmap。
flattenmapflatMapWordCount 单词切分val datas: List[(String, Int)] = List( ("hello", 4), ("hello world", 3), ("hello scala flink", 2), ("hello spark scala hive hive", 1))val wordsList: List[(String, Int)] = datas.flatMap(wordsAndCount =>原创 2020-05-31 11:14:54 · 496 阅读 · 0 评论