- 博客(8)
- 收藏
- 关注
转载 SLIC分割方法
《SLIC Superpixels》 SLIC: simple linear iterative clustering的简称,即简单的线性迭代聚类。 这是一个基于聚类算法的超像素分割,由LAB空间以及x、y像素坐标共5维空间来计算。不仅可以分割彩色图,也可以兼容分割灰度图,它还有一个优点就是可以人为的设置需要分割的超像素的数量。 实现方法:1)初始
2014-01-14 15:11:27 1745 3
转载 Global Contrast based Salient Region Detection
本文为大家分享一篇关于显著图检测的论文-《Global Contrast based Salient Region Detection》,即基于全局对比度的显著性检测。该论文发表在2011年的CVPR上,是在显著图方向上做得比较好的文章,文中的显著图提取做得很好,算法的速度也比较快。下图1是本文算法的结果:下图2-1是本文算法和其他算法的直观比较结果,图2-2是召回率和准确
2014-01-13 13:55:57 3649 6
转载 显著性论文学习阶段总结(二)
1.Ali Borji, Laurent Itti, Exploiting Local and Global Patch Rarities for Saliency Detection, CVPR20121) 系统框架: 2) 算法思路:① 图像表示:本文通过1500张图像中,在各通道提取出的8*8的patch,学到了一个自然图像的字典。使用这个字典以及一系列的系数
2014-01-13 13:49:12 1680
转载 显著性论文学习阶段总结(一)
1.Mingming Cheng,Global Contrast based Salient Region Detection,CVPR20111) HC:基于直方图对比度的方法,每一个像素的显著性值是由它与图像中所有其他像素的颜色差异来确定,得到全分辨率显著性图像;2) RC:基于局部对比度的方法,先将图像分割成小区域,采用的分割方法是基于图的分割,基本分割思想是将每个像素点作为
2014-01-13 13:48:37 1670
转载 2013 CVPR
显著性Saliency Aggregation: A Data-driven Approach Long Mai, Yuzhen Niu, Feng Liu 现在还没有搜到相关的资料,应该是多线索的自适应融合来进行显著性检测的PISA: Pixelwise Image Saliency by Aggregating Complementary Appearance Contrast
2014-01-08 14:11:59 991
转载 Tracking-Learning-Detection
配合一下LiMu。[5] Z. Kalal, K. Mikolajczyk, and J. Matas, “Face-TLD: Tracking-Learning-Detection Applied to Faces,” International Conference on Image Processing, 2010.[pdf][poster][ ][4] Z. Kalal, K. Mikol
2014-01-08 11:20:28 864
转载 Mean Shift Tracking: 2000-2012回顾
Mean Shift跟踪从2000年被提出至今已经经历了十余个年头,从被大量灌水到如今不屑被拿来作为比较算法,经历了辉煌高潮的 Mean-Shift based Tracking正在慢慢淡出主流tracking研究的视线。但是,作为一种轻量级、易实现的算法,用它作为视觉跟踪研究的入门还是相当推荐的。本文回顾Mean Shift跟踪从提出、发展至当前“停滞”状态过程中出现的一些经典论文,旨在
2014-01-08 10:51:58 643
转载 霍夫森林(Hough Forest)目标检测算法
Hough Forest目标检测一种比较时兴的目标检测算法,Juergen Gall在2009的CVPR上提出。 Hough Forest听上去像hough变换+Random Forest的结合体,其实,不完全是这样的。它更像是decision forest和regression forest的结合体再加上generalized hough transform:森林中每棵树即不是分类
2014-01-08 10:47:37 1043
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人