堆棋子与曼哈顿距离

堆棋子

牛客网通道:
https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b

小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.

输入描述:

输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数
第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9)
第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)

输出描述:

输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格

如样例所示:

对于1个棋子: 不需要操作
对于2个棋子: 将前两个棋子放在(1, 1)中
对于3个棋子: 将前三个棋子放在(2, 1)中
对于4个棋子: 将所有棋子都放在(3, 1)中

示例1

输入
4
1 2 4 9
1 1 1 1
输出
0 1 3 10


解题

解题前介绍一下曼哈顿距离

曼哈顿距离
https://baike.baidu.com/item/%E6%9B%BC%E5%93%88%E9%A1%BF%E8%B7%9D%E7%A6%BB/743092?fr=aladdin

相应的问题:街区最短距离问题

这是上一个问题中的子问题。

对于堆棋子问题,枚举法太耗时,所以程序猿们探索数据间的关系,我们发现,纵坐标与横坐标可以单独考虑(曼哈顿距离的特点),同时,这个最优点的横纵坐标与题目所给点的横纵坐标的关系密不可分。

枚举

对于i个棋子,i取1~n-1

遍历横纵坐标:

for(int row=0;row<n;row++){
    for(int col=0;col<n;col++){
    }
}

分别求到各个输入点的距离,选i个最小的,求和

中位数

取i个棋子中的横坐标和纵坐标的中位数为最优点,到i个棋子的距离即为所求。(哪i个呢,需要枚举吧,组合问题,n个取1、2、3、4….时各种情况,好心人写一个代码看看)。


示例代码

链接:https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b
来源:牛客网

import java.util.*;

public class Main {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        while (in.hasNext()) {
            int n = in.nextInt();
            int[] x = new int[n];
            int[] y = new int[n];
            for (int i = 0; i < n; i ++) {
                x[i] = in.nextInt();
            }
            for (int i = 0; i < n; i ++) {
                y[i] = in.nextInt();
            }
            List<Long> res = new ArrayList<>();
            long min, sum;
            for (int i = 1; i <= n; i ++) {
                min = Long.MAX_VALUE;
                for (int row = 0; row < n; row ++) {
                    for (int col = 0; col < n; col ++) {
                        sum = 0;
                        PriorityQueue<Integer> pq = new PriorityQueue<>(i, new Comparator<Integer>() {
                            @Override
                            public int compare(Integer o1, Integer o2) {
                                return o2 - o1;
                            }
                        });
                        for (int c = 0; c < n; c ++) {
                            int xc = x[c];
                            int yc = y[c];
                            int distance = Math.abs(xc - x[row]) + Math.abs(yc - y[col]);
                            sum += distance;
                            pq.add(distance);
                            if (pq.size() > i) {
                                sum -= pq.poll();
                            }
                        }
                        min = Math.min(min, sum);
                    }
                }
                res.add(min);
            }
            for (int i = 0; i < n - 1; i ++) System.out.print(res.get(i) + " ");
            System.out.println(res.get(n - 1));
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值