堆棋子
牛客网通道:
https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b
小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.
输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数
第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9)
第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)
输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格
如样例所示:
对于1个棋子: 不需要操作
对于2个棋子: 将前两个棋子放在(1, 1)中
对于3个棋子: 将前三个棋子放在(2, 1)中
对于4个棋子: 将所有棋子都放在(3, 1)中
示例1
输入
4
1 2 4 9
1 1 1 1
输出
0 1 3 10
解题
解题前介绍一下曼哈顿距离
曼哈顿距离
https://baike.baidu.com/item/%E6%9B%BC%E5%93%88%E9%A1%BF%E8%B7%9D%E7%A6%BB/743092?fr=aladdin相应的问题:街区最短距离问题
这是上一个问题中的子问题。
对于堆棋子问题,枚举法太耗时,所以程序猿们探索数据间的关系,我们发现,纵坐标与横坐标可以单独考虑(曼哈顿距离的特点),同时,这个最优点的横纵坐标与题目所给点的横纵坐标的关系密不可分。
枚举
对于i个棋子,i取1~n-1
遍历横纵坐标:
for(int row=0;row<n;row++){ for(int col=0;col<n;col++){ } }
分别求到各个输入点的距离,选i个最小的,求和
中位数
取i个棋子中的横坐标和纵坐标的中位数为最优点,到i个棋子的距离即为所求。(哪i个呢,需要枚举吧,组合问题,n个取1、2、3、4….时各种情况,好心人写一个代码看看)。
示例代码
链接:https://www.nowcoder.com/questionTerminal/27f3672f17f94a289f3de86b69f8a25b
来源:牛客网
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
int n = in.nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; i ++) {
x[i] = in.nextInt();
}
for (int i = 0; i < n; i ++) {
y[i] = in.nextInt();
}
List<Long> res = new ArrayList<>();
long min, sum;
for (int i = 1; i <= n; i ++) {
min = Long.MAX_VALUE;
for (int row = 0; row < n; row ++) {
for (int col = 0; col < n; col ++) {
sum = 0;
PriorityQueue<Integer> pq = new PriorityQueue<>(i, new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
for (int c = 0; c < n; c ++) {
int xc = x[c];
int yc = y[c];
int distance = Math.abs(xc - x[row]) + Math.abs(yc - y[col]);
sum += distance;
pq.add(distance);
if (pq.size() > i) {
sum -= pq.poll();
}
}
min = Math.min(min, sum);
}
}
res.add(min);
}
for (int i = 0; i < n - 1; i ++) System.out.print(res.get(i) + " ");
System.out.println(res.get(n - 1));
}
}
}