机器学习
文章平均质量分 63
「已注销」
主要对计算机图形学和计算机视觉感兴趣
展开
-
KNN分类
找k个最近的实例投票决定新实例的类标 KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例出现时,直接在训练数据集中找k个最近的实例,把这个新的实例分配给这k个训练实例中实例数最多类。KNN也成为懒惰学习,它不需要训练过程,在类标边界比较整齐的情况下分类的准确率很高。KNN算法需要人为决定K的取值,即找几个最近的实例,k值不同,分类结果的结果也会不同。原创 2015-10-02 20:50:20 · 621 阅读 · 0 评论 -
协方差矩阵
一、统计学的基本概念 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。 以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],原创 2015-10-02 11:28:23 · 445 阅读 · 0 评论 -
CS231n课程图像分类学习笔记
教程目的:介绍图像分类方法和数据驱动方法 内容列表: 图像分类、数据驱动方法和流程 Nearest Neighbor分类器 验证集、交叉验证集和超参数调参 Nearest Neighbor的优劣 小结:应用kNN实践 图像分类、数据驱动方法和流程图像分类目标:所谓图像分类问题,就是已有固定的分类标签集合,然后对于输入的图像,从分类标签集合中找出一个分类标签,最后把分类标签分配给该输入图像。计算机视原创 2016-05-30 14:46:59 · 635 阅读 · 0 评论 -
用Python和scikit-learn来介绍机器学习
用Python和scikit-learn来介绍机器学习用Python和scikit-learn来介绍机器学习 数据加载 数据正则化 特征选择 算法开发 LR 朴素贝叶斯 K最近邻 决策树 支持向量机 怎样优化算法参数数据加载当我们学习机器学习的时候,首先必须得有数据,我们得把数据加载到内存中才能对它进行处理。这一节我们先介绍如何加载数据的问题。我们以从著名的UCI Machine Learning原创 2016-05-17 15:31:05 · 1270 阅读 · 0 评论