Machine Lanauage
文章平均质量分 94
StevenJane
这个作者很懒,什么都没留下…
展开
-
机器学习(5)——贝叶斯学习(二)
贝叶斯网络(Bayesian Networks),它能够很好的在复杂空间表示和操作概率量。原创 2017-12-01 13:47:26 · 5416 阅读 · 0 评论 -
机器学习(4)——贝叶斯学习(一)
机器学习——贝叶斯推理原创 2017-11-22 10:52:47 · 1476 阅读 · 0 评论 -
机器学习(5)——集成学习(Ensemble Learning)
本文主要是对监督学习进行相应的总结,概述出相应的内容。原创 2017-12-01 07:10:18 · 1081 阅读 · 0 评论 -
非监督学习——PCA
PCA原创 2017-11-29 07:41:35 · 3611 阅读 · 0 评论 -
机器学习(3)——支持向量机(Support Vector Machine)
一:支持向量机首先请大家思考一个测试场景,假设我们有一个数据集,这个数据集是线性可分的(换句话说就是我们可以完全的将这个数据集分成两个组)。如果从几何的角度来讲,我们就是需要寻找一个超平面,这个超平面可以完全的将这个数据集按照要求分隔开。但是这个超平面却可能会存在很多个(可能数都数不清),那么怎么在该情况下寻找最优平面呢?这里给大家展示一副如下所示的图形: 这个图形其实就是我们刚才描述的场景的几何原创 2017-10-15 22:27:26 · 627 阅读 · 0 评论 -
拉格朗日乘子法(Lagrange Multiplier)和KKT条件
本文主要从多元变量优化的问题为背景,讲解拉格朗日乘子法、KK条件、拉格朗日对偶等相关的问题。原创 2017-10-15 20:33:14 · 9500 阅读 · 5 评论 -
机器学习(2)——神经网络
一:前言1.1 生物神经元1.1.1 结构神经细胞是构成神经系统的基本单元,称为生物神经元,简称神经元。神经元主要由树突、轴突、细胞体三部分组成,如下图: 1.1.2 工作原理神经元的信息传递和处理是一种电化学信号,树突由于电化学作用受外界的刺激,通过胞体内的活动体现为轴突点位,当轴突点位达到一定的值形成神经脉冲或动作电位;再通过轴突末梢传递给其他的神经元,从控制论的观点来看;这一过程可以看作一个原创 2017-10-08 21:23:15 · 1256 阅读 · 0 评论 -
决策树算法之ID3
ID3算法的基本解释。原创 2017-10-06 17:32:34 · 612 阅读 · 0 评论 -
机器学习(1)——决策树
一:决策树的基本概念1.1 基本概念决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望大于零的概率,评估项目风险、判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。———百度百科在机器学习(Machine Learning)中,决策树是一种预测模型、它代表的是对象属性与对象值之间的一种映射关系。树中的每个节点表示某个对象属性、每个分叉路径原创 2017-10-06 16:27:44 · 1094 阅读 · 0 评论 -
信息熵——Information Entropy
信息熵又被称为香农熵,它的出现解决了信息度量的问题。信息熵认为一条信息的信息量的大小和它的不确定性有直接的关系。一:信息的不确定性首先请看如下的两条信息(这里最开始使用的是例子,但是后来发现我们这里讲的是信息熵,所以使用信息这个词语可以更好的帮助大家来理解信息熵这个概念):太阳从东边升起。提问20个问题猜出我心中正在想的东西。(没有听过这个游戏的朋友请自行度娘或者谷歌,会出现不同的版本,但具体的原创 2017-10-06 09:34:22 · 5619 阅读 · 0 评论 -
深度学习——梯度下降实现对感知器的权重优化问题的分析(理论加上梯度下降的代码实现)
神经网络感知器、梯度下降算法的说明。原创 2017-12-24 18:46:11 · 1160 阅读 · 0 评论