题目: 题目链接
题目:就是给出N个半平面,求这N个半平面交
分析:O(n^2),初始化坐标系(0,10000)*(0,10000)。然后对每一个半平面cut一次。最后求一次面积即可:
代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
#include <functional>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cassert>
#include <bitset>
#include <stack>
#include <ctime>
#include <list>
#define INF 0x7fffffff
#define max3(a,b,c) (max(a,b)>c?max(a,b):c)
#define min3(a,b,c) (min(a,b)<c?min(a,b):c)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
#define N 200
#define eps 1e-8
struct point
{
double x, y;
} s;
struct node//数组,保存点和大小
{
int n;
point p[N];
} P;
int n;
int judge(double a)//判断-1,0,+1
{
if(fabs(a) < eps)
return 0;
if(a > 0)
return 1;
else
return -1;
}
double cross(point a, point b, point c){
double s1 = b.x - a.x;
double t1 = b.y - a.y;
double s2 = c.x - a.x;
double t2 = c.y - a.y;
return s1*t2 - s2*t1;
}
node cut(node res, point s, point e)
{
int d1, d2;
int i, t;
point a;
node b;
b.n = 0;
double s1, s2;
res.p[res.n] = res.p[0];
for(i = 0, t = 0; i < res.n; ++i)
{
d1 = judge(s1 = cross(res.p[i], s, e));
d2 = judge(s2 = cross(res.p[i+1], s, e));
if(d1 >= 0)
b.p[t++] = res.p[i];
if(d1 * d2 < 0)
{
a.x = (s2 * res.p[i].x - s1 * res.p[i+1].x)/(s2 - s1);
a.y = (s2 * res.p[i].y - s1 * res.p[i+1].y)/(s2 - s1);
b.p[t++] = a;
}
}
b.n = t;
return b;
}
double AREAnode(node res)
{
int i;
double area = 0;
res.p[res.n] = res.p[0];
s.x = s.y = 0;
for(i = 0; i < res.n; ++i)
area += cross(s, res.p[i], res.p[i+1]);
return fabs(area);
}
int main()
{
scanf("%d", &n);
int i;
P.n = 4;//初始化大小和面积
P.p[0].x = 0;
P.p[0].y = 0;
P.p[1].x = 10000;
P.p[1].y = 0;
P.p[2].x = 10000;
P.p[2].y = 10000;
P.p[3].x = 0;
P.p[3].y = 10000;
point a, b;
for(i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf", &a.x, &a.y, &b.x, &b.y);
P = cut(P, a, b);
}
double area = AREAnode(P) / 2;
printf("%.1lf\n", area);
return 0;
}