POJ 3356(编辑距离)

题目:题目链接

题目大意:给出两个字符串x 与 y,其中x的长度为n,y的长度为m,并且m>=n然后y可以经过删除一个字母,添加一个字母,转换一个字母,三种操作得到x,问最少可以经过多少次操作


解题思路:这是编辑距离问题


我们设dp[i][j]的意义为y取前i个字母和x取前j个字母的最少操作次数
那么可以得到dp[0][i] = i和dp[i][0]=i,因为某一字符串为空的,要得到另一个i长度字符串,必须经过i次插入操作。

而dp[1][1],有3中操作,

1.转换 ,将str1[0]和str2[0]判断,如果相等,则dp[1][1]=0,否则dp[1][1]=1
2.删除,因为,目的串比源串小,所以删除源串一个字符,也就是必须有一次操作,删除str1[0]后,那么dp[1][1]就是dp[0][1]的值+1
3.添加,在目的串添加一个字符,即源串不变,但是目的串减1,和源串去匹配,即dp[1][0] + 1

这样dp[i][j]可以得到3中操作的最小值
dp[i-1][j-1]+str1[i]==str2[j]?0:1
dp[i-1][j]+1
dp[i][j-1]+1

所以就是裸的模版:

#include <iostream>
using namespace std;
#define MAXS 1010

char str1[MAXS],str2[MAXS];
int len1,len2;

int f[MAXS][MAXS];			

int min(int a,int b)
{
    return a<b?a:b;
}
int main()
{
    int i,j;
    while(cin>>len1>>str1)
    {
        cin>>len2>>str2;
        f[0][0] = 0;
        for(i = 1; i <= len1; i++)
            f[i][0] = i;
        for(i = 1; i <= len2; i++)
            f[0][i] = i;
        for(i = 1; i <= len1; i++)
        {
            for(j = 1; j <= len2; j++)
            {
                int tmp = f[i - 1][j - 1] + (str1[i - 1]==str2[j - 1]?0:1);
                tmp = min(f[i - 1][j] + 1,tmp);
                f[i][j] = min(f[i][j - 1] + 1,tmp);
            }
        }
        cout<<f[len1][len2]<<endl;
    }
    return 0;
}

努力努力...


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值