/*
数论模板
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef long long LL;
const int maxn = 1000000;
const int maxp = 700000;//素数个数
/
int vis[maxn];
int prime[maxp];//素数表
//筛素数
bool sieve(int n){
int m = (int)sqrt(n+0.5);
memset(vis, 0 , sizeof(vis));
for(int i = 2; i <= m; i++){
if(!vis[i])
for(int j = i*i; j <= n; j+=i)
vis[j] = 1;
}
}
//生成素数表
int gen_primes(int n){
sieve(n);
int c = 0;
for(int i = 2; i <= n; i++) if(!vis[i])
prime[c++] = i;
return c;
}
//判断M是否为质数,是返回1,否返回0
int is_prime(int m){
int i;
for(i=2;i<=sqrt(m);i++)
if(!(m%i))return 0;
return 1;
}
/
//最大公约数
LL gcd(LL a, LL b){
return b == 0 ? a : gcd(b, a%b);
}
//扩展欧几里得算法
void gcd(LL a, LL b, LL& d, LL& x, LL& y){
if(!b){
d = a; x = 1; y = 0;
}else{
gcd(b, a%b, d, x, y);
y -= x*(a/b);
}
}
//最小公倍数
LL lcm(const LL a,const LL b){
//return a*b/g;
return a * gcd(a,b) / b;//避免溢出
}
/
//计算欧拉函数
int euler_phi(int n){
int m = (int) sqrt(n+0.5);
int ans = n;
for(int i = 2; i<= m; i++) if(n % i == 0){
ans = ans / i * (i-1);
while(n % i == 0) n /= i;
}
if(n > 1) ans = ans / n * (n-1);
return ans;
}
//用类似筛选的方法计算欧拉函数表
int phi[maxn];
void phi_table(int n){
for(int i= 2; i <= n; i++) phi[i] = 0;
phi[1] = 1;
for(int i = 2; i <= n; i++) if(!phi[i])
for(int j = i; j <= n; j+=i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i-1);
}
}
/
//返回ab mod n.要求0 <= a, b < n
LL mul_mod(LL a, LL b, int n){
return a * b % n;
}
//返回a^p mod n, 要求0 <= a
LL pow_mod(LL a, LL p, LL n){
if(p == 0) return 1;
LL ans = pow_mod(a, p/2, n);
ans = ans * ans % n;
if(p % 2 == 1) ans = ans * a % n;
return ans;
}
/
//判断是否是回文数
bool isHuiWen(int n){
int m = n;
int a = 0;
int i;
while(m){
i = m%10;
m /= 10;
a = (a*10 + i);
}
if(a == n) return true;
else return false;
}
//生成<= 9位的回文数,并输出
//7位以下共800以下
//9位以下共5953
void get_huiwen(){
int a,b,c,d,e,m;
for(m=1;m<=11;m++,m++){//1,2位
if(ss(m))cout << m << endl;
}
for(a=1;a<10;a++,a++)//3位
if(a!=5)
for(b=0;b<10;b++){
m=a*101+b*10;
if(ss(m))cout << m << endl;
}
for(a=1;a<10;a++,a++)
if(a!=5)
for(b=0;b<10;b++)//5位
for(c=0;c<10;c++){
m=a*10001+b*1010+c*100;
if(ss(m))cout << m << endl;
}
for(a=1;a<10;a++,a++)
if(a!=5)
for(b=0;b<10;b++)
for(c=0;c<10;c++)//7位
for(d=0;d<10;d++){
m=a*1000001+b*100010+c*10100+d*1000;
if(ss(m))cout << m << endl;
}
for(a=1;a<10;a++,a++)
if(a!=5)
for(b=0;b<10;b++)
for(c=0;c<10;c++)
for(d=0;d<10;d++)//9位
for(e=0;e<10;e++){
m=a*100000001+b*10000010+c*1000100+d*101000+e*10000;
if(ss(m))cout << m << endl;
}
}
int main(){
return 0;
}
数论模板
最新推荐文章于 2022-06-29 23:31:50 发布