数论模板

/*
    数论模板
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;

typedef  long long LL;
const int maxn = 1000000;
const int maxp = 700000;//素数个数

/
int vis[maxn];
int prime[maxp];//素数表
//筛素数
bool sieve(int n){
    int m = (int)sqrt(n+0.5);
    memset(vis, 0 , sizeof(vis));
    for(int i = 2; i <= m; i++){
        if(!vis[i])
        for(int j = i*i; j <= n; j+=i) 
            vis[j] = 1;
    }
}
//生成素数表
int gen_primes(int n){
    sieve(n);
    int c = 0;
    for(int i = 2; i <= n; i++) if(!vis[i])
        prime[c++] = i;
    return c;
}
//判断M是否为质数,是返回1,否返回0
int is_prime(int m){
	int i;
	for(i=2;i<=sqrt(m);i++)
		if(!(m%i))return 0;
	return 1;
}
/
//最大公约数
LL gcd(LL a, LL b){
    return b == 0 ? a : gcd(b, a%b);
}
//扩展欧几里得算法
void gcd(LL a, LL b, LL& d, LL& x, LL& y){
    if(!b){
        d = a; x = 1; y = 0;
    }else{
        gcd(b, a%b, d, x, y);
        y -= x*(a/b);
    }
}
//最小公倍数
LL lcm(const LL a,const LL b){
     //return a*b/g;
    return a * gcd(a,b) / b;//避免溢出
}
/
//计算欧拉函数
int euler_phi(int n){
    int m = (int) sqrt(n+0.5);
    int ans = n;
    for(int i = 2; i<= m; i++) if(n % i == 0){
        ans = ans / i * (i-1);
        while(n % i == 0) n /= i;
    }
    if(n > 1) ans = ans / n * (n-1);
    return ans;
}
//用类似筛选的方法计算欧拉函数表
int phi[maxn];
void phi_table(int n){
    for(int i= 2; i <= n; i++) phi[i] = 0;
    phi[1] = 1;
    for(int i = 2; i <= n; i++) if(!phi[i])
        for(int j = i; j <= n; j+=i){
            if(!phi[j]) phi[j] = j;
            phi[j] = phi[j] / i * (i-1);
        }
 }
 /
 //返回ab mod n.要求0 <= a, b < n
 LL mul_mod(LL a, LL b, int n){
     return a * b % n;
 }
 //返回a^p mod n, 要求0 <= a
 LL pow_mod(LL a, LL p, LL n){
     if(p == 0) return 1;
     LL ans = pow_mod(a, p/2, n);
     ans = ans * ans % n;
     if(p % 2 == 1) ans = ans * a % n;
     return ans;
 }
/
//判断是否是回文数
bool isHuiWen(int n){
    int m = n;
    int a = 0;
    int i;
    while(m){
        i = m%10;
        m /= 10;
        a = (a*10 + i);
    }
    if(a == n) return true;
    else return false;
}
//生成<= 9位的回文数,并输出
//7位以下共800以下
//9位以下共5953
void get_huiwen(){
	int a,b,c,d,e,m;
	for(m=1;m<=11;m++,m++){//1,2位
		if(ss(m))cout << m << endl;
	}
	for(a=1;a<10;a++,a++)//3位
		if(a!=5)
		for(b=0;b<10;b++){
			m=a*101+b*10;
			if(ss(m))cout << m << endl;
		}
	for(a=1;a<10;a++,a++)
		if(a!=5)
		for(b=0;b<10;b++)//5位
			for(c=0;c<10;c++){
				m=a*10001+b*1010+c*100;
				if(ss(m))cout << m << endl;
			}
	for(a=1;a<10;a++,a++)
		if(a!=5)
		for(b=0;b<10;b++)
			for(c=0;c<10;c++)//7位
				for(d=0;d<10;d++){
					m=a*1000001+b*100010+c*10100+d*1000;
					if(ss(m))cout << m << endl;
				}
	for(a=1;a<10;a++,a++)
		if(a!=5)
		for(b=0;b<10;b++)
			for(c=0;c<10;c++)
				for(d=0;d<10;d++)//9位
					for(e=0;e<10;e++){
						m=a*100000001+b*10000010+c*1000100+d*101000+e*10000;
						if(ss(m))cout << m << endl;
					}
}

int main(){
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值