版权声明:本文转载自https://blog.csdn.net/dcrmg/article/details/53543341
相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。
相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。
图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。
这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。
Tenengrad梯度方法
Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。
-
#include <highgui/highgui.hpp>
-
#include <imgproc/imgproc.hpp>
-
-
using
namespace
std;
-
using
namespace cv;
-
-
int main()
-
{
-
Mat imageSource = imread(
"2.jpg");
-
Mat imageGrey;
-
-
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
-
Mat imageSobel;
-
Sobel(imageGrey, imageSobel, CV_16U,
1,
1);
-
-
//图像的平均灰度
-
double meanValue =
0.0;
-
meanValue = mean(imageSobel)[
0];
-
-
//double to string
-
stringstream meanValueStream;
-
string meanValueString;
-
meanValueStream << meanValue;
-
meanValueStream >> meanValueString;
-
meanValueString =
"Articulation(Sobel Method): " + meanValueString;
-
putText(imageSource, meanValueString, Point(
20,
50), CV_FONT_HERSHEY_COMPLEX,
0.8, Scalar(
255,
255,
25),
2);
-
imshow(
"Articulation", imageSource);
-
waitKey();
-
}
使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。
Laplacian梯度方法:
Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。
-
#include <highgui/highgui.hpp>
-
#include <imgproc/imgproc.hpp>
-
-
using
namespace
std;
-
using
namespace cv;
-
-
int main()
-
{
-
Mat imageSource = imread(
"1.jpg");
-
Mat imageGrey;
-
-
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
-
Mat imageSobel;
-
-
Laplacian(imageGrey, imageSobel, CV_16U);
-
//Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
-
-
//图像的平均灰度
-
double meanValue =
0.0;
-
meanValue = mean(imageSobel)[
0];
-
-
//double to string
-
stringstream meanValueStream;
-
string meanValueString;
-
meanValueStream << meanValue;
-
meanValueStream >> meanValueString;
-
meanValueString =
"Articulation(Laplacian Method): " + meanValueString;
-
putText(imageSource, meanValueString, Point(
20,
50), CV_FONT_HERSHEY_COMPLEX,
0.8, Scalar(
255,
255,
25),
2);
-
imshow(
"Articulation", imageSource);
-
waitKey();
-
}
用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:
方差方法:
方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。
对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好。
-
#include <highgui/highgui.hpp>
-
#include <imgproc/imgproc.hpp>
-
-
using
namespace
std;
-
using
namespace cv;
-
-
int main()
-
{
-
Mat imageSource = imread(
"2.jpg");
-
Mat imageGrey;
-
-
cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
-
Mat meanValueImage;
-
Mat meanStdValueImage;
-
-
//求灰度图像的标准差
-
meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
-
double meanValue =
0.0;
-
meanValue = meanStdValueImage.at<
double>(
0,
0);
-
-
//double to string
-
stringstream meanValueStream;
-
string meanValueString;
-
meanValueStream << meanValue*meanValue;
-
meanValueStream >> meanValueString;
-
meanValueString =
"Articulation(Variance Method): " + meanValueString;
-
-
putText(imageSource, meanValueString, Point(
20,
50), CV_FONT_HERSHEY_COMPLEX,
0.8, Scalar(
255,
255,
25),
2);
-
imshow(
"Articulation", imageSource);
-
waitKey();
-
}
方差数值随着清晰度的降低逐渐降低:
在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。