OpenCV 图像清晰度评价(相机自动对焦)

版权声明:本文转载自https://blog.csdn.net/dcrmg/article/details/53543341

相机的自动对焦要求相机根据拍摄环境和场景的变化,通过相机内部的微型驱动马达,自动调节相机镜头和CCD之间的距离,保证像平面正好投影到CCD的成像表面上。这时候物体的成像比较清晰,图像细节信息丰富。


相机自动对焦的过程,其实就是对成像清晰度评价的过程,对焦不准确,拍摄出来的图像清晰度低,视觉效果模糊,如果是在工业检测测量领域,对焦不准导致的后果可能是致命的;对焦准确的图像清晰度较高,层次鲜明,对比度高。


图像清晰度评价算法有很多种,在空域中,主要思路是考察图像的领域对比度,即相邻像素间的灰度特征的梯度差;在频域中,主要思路是考察图像的频率分量,对焦清晰的图像高频分量较多,对焦模糊的图像低频分量较多。


这里实现3种清晰度评价方法,分别是Tenengrad梯度方法、Laplacian梯度方法和方差方法。


Tenengrad梯度方法


Tenengrad梯度方法利用Sobel算子分别计算水平和垂直方向的梯度,同一场景下梯度值越高,图像越清晰。以下是具体实现,这里衡量的指标是经过Sobel算子处理后的图像的平均灰度值,值越大,代表图像越清晰。



 
 
  1. #include <highgui/highgui.hpp>
  2. #include <imgproc/imgproc.hpp>
  3. using namespace std;
  4. using namespace cv;
  5. int main()
  6. {
  7. Mat imageSource = imread( "2.jpg");
  8. Mat imageGrey;
  9. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
  10. Mat imageSobel;
  11. Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
  12. //图像的平均灰度
  13. double meanValue = 0.0;
  14. meanValue = mean(imageSobel)[ 0];
  15. //double to string
  16. stringstream meanValueStream;
  17. string meanValueString;
  18. meanValueStream << meanValue;
  19. meanValueStream >> meanValueString;
  20. meanValueString = "Articulation(Sobel Method): " + meanValueString;
  21. putText(imageSource, meanValueString, Point( 20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar( 255, 255, 25), 2);
  22. imshow( "Articulation", imageSource);
  23. waitKey();
  24. }


使用三张测试图片模拟不同对焦。第一张最清晰,得分最高,第二三张越来越模糊,得分依次降低。








Laplacian梯度方法:


Laplacian梯度是另一种求图像梯度的方法,在上例的OpenCV代码中直接替换Sobel算子即可。



 
 
  1. #include <highgui/highgui.hpp>
  2. #include <imgproc/imgproc.hpp>
  3. using namespace std;
  4. using namespace cv;
  5. int main()
  6. {
  7. Mat imageSource = imread( "1.jpg");
  8. Mat imageGrey;
  9. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
  10. Mat imageSobel;
  11. Laplacian(imageGrey, imageSobel, CV_16U);
  12. //Sobel(imageGrey, imageSobel, CV_16U, 1, 1);
  13. //图像的平均灰度
  14. double meanValue = 0.0;
  15. meanValue = mean(imageSobel)[ 0];
  16. //double to string
  17. stringstream meanValueStream;
  18. string meanValueString;
  19. meanValueStream << meanValue;
  20. meanValueStream >> meanValueString;
  21. meanValueString = "Articulation(Laplacian Method): " + meanValueString;
  22. putText(imageSource, meanValueString, Point( 20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar( 255, 255, 25), 2);
  23. imshow( "Articulation", imageSource);
  24. waitKey();
  25. }


用同样的三张测试图片测试,结果一致,随着对焦模糊得分降低:








方差方法:


方差是概率论中用来考察一组离散数据和其期望(即数据的均值)之间的离散(偏离)成都的度量方法。方差较大,表示这一组数据之间的偏差就较大,组内的数据有的较大,有的较小,分布不均衡;方差较小,表示这一组数据之间的偏差较小,组内的数据之间分布平均,大小相近。


对焦清晰的图像相比对焦模糊的图像,它的数据之间的灰度差异应该更大,即它的方差应该较大,可以通过图像灰度数据的方差来衡量图像的清晰度,方差越大,表示清晰度越好



 
 
  1. #include <highgui/highgui.hpp>
  2. #include <imgproc/imgproc.hpp>
  3. using namespace std;
  4. using namespace cv;
  5. int main()
  6. {
  7. Mat imageSource = imread( "2.jpg");
  8. Mat imageGrey;
  9. cvtColor(imageSource, imageGrey, CV_RGB2GRAY);
  10. Mat meanValueImage;
  11. Mat meanStdValueImage;
  12. //求灰度图像的标准差
  13. meanStdDev(imageGrey, meanValueImage, meanStdValueImage);
  14. double meanValue = 0.0;
  15. meanValue = meanStdValueImage.at< double>( 0, 0);
  16. //double to string
  17. stringstream meanValueStream;
  18. string meanValueString;
  19. meanValueStream << meanValue*meanValue;
  20. meanValueStream >> meanValueString;
  21. meanValueString = "Articulation(Variance Method): " + meanValueString;
  22. putText(imageSource, meanValueString, Point( 20, 50), CV_FONT_HERSHEY_COMPLEX, 0.8, Scalar( 255, 255, 25), 2);
  23. imshow( "Articulation", imageSource);
  24. waitKey();
  25. }


方差数值随着清晰度的降低逐渐降低:







在工业应用中,最清晰的对焦拍摄出来的图像不一定是最好的,有可能出现摩尔纹(水波纹)现象,一般需要在最清晰对焦位置附件做一个微调。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值