自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(56)
  • 资源 (5)
  • 收藏
  • 关注

原创 新专利:作物生长期预测方法及装置

核心原理在于,该系统通过图像识别技术,持续追踪分析田间作物生长过程,并结合深度学习方法,建立起覆盖全生育期的孪生模型,巧妙地将计算机视觉与人工智能技术相融合,犹如为每株作物配备了贴身"健康管家",既能洞察当下,又能预知未来,实现全流程、全方位、全天候的精准化管理。作物全生育期智能预警是数字农业的重要使能技术。"作物生长期预测方法及装置"的的底层逻辑是通过机器视觉、知识图谱等现代信息技术手段,重构农业生产的数据流、算法流、知识流,最终实现农事操作从"经验说了算"到"数据说了算"的智能化转型。

2024-09-11 10:49:09 142

原创 YOLOv10:面向下一代目标检测模型的创新探索

**简洁性与复杂性的平衡**:在深度学习模型的设计中,简洁性往往意味着更快的推理速度和更低的资源消耗。- **自适应性与通用性**:面对多变的应用场景,YOLOv10可以引入自适应机制,使得模型能够根据场景的不同自动调整自身的计算量和精度需求。- **对小目标的精准检测**:在智能监控和无人驾驶等应用场景中,小目标的检测往往是决定系统成败的关键。- **先进的数据增强策略**:YOLOv10可以结合最新的数据增强技术,如AutoAugment、CutMix和Mosaic等,来提高模型的泛化能力。

2024-08-22 22:18:44 490

原创 YOLOv10的技术提升与前沿改进方案设计

随着YOLOv10的逐步研发和推进,通过在特征提取、特征融合、损失函数、模型压缩、数据增强等多个方面的改进,结合前沿的Transformer技术,YOLOv10有望在保持实时性的同时,进一步提升目标检测的精度和鲁棒性。- **BiFPN的应用**:可加权双向特征金字塔网络(BiFPN)允许特征在金字塔内进行多层次的双向流动,并通过加权机制动态调整每层特征的重要性,从而更有效地整合不同尺度的特征。- **神经架构搜索(NAS)技术的引入**:YOLOv10可以利用NAS技术自动搜索最佳的特征融合结构。

2024-08-21 22:18:29 568

原创 智能微气候:精准调控背后的算法革命

通过迁移学习,优化后的策略可快速移植到新的设施环境、新的作物品种,实现农业专家知识的规模化复用。农业知识图谱是智慧农业的基础设施。未来,LLM与5G、IoT等新一代信息技术的融合,将进一步提升设施农业的智能化水平,实现更精准、更高效、更环保的设施种植模式。另一方面,LLM可以学习农业专家的经验知识,通过知识蒸馏等技术,将专家经验转化为可解释、可迁移的计算机程序,助力农业生产智能化。温室、养殖舍等设施通过对光、温、水、气、肥等环境要素的调控,为作物和畜禽营造最适宜的生长环境,实现农业生产的高产、优质、高效。

2024-08-20 17:09:37 1040

原创 溯源“最强大脑“:解密智能微气候调控中的算法革命

未来,随着算法向"白盒化"演进,农业专家与人工智能的携手共进,必将开创智能微气候调控的新纪元,引领设施农业迈向"AI驱动,智慧规划"的美好明天。"白盒化"让算法从神秘的"黑匣子"走向透明的"玻璃房",农业专家可查看其"内部构造",甚至参与"装配"。元学习"授人以渔",通过学习"学习范式",让算法拥有"一次学习,普适建模"的"终身受用"技能。"联邦"将分散数据"连接"起来,像"分布式大脑"般汇聚各方智慧,让"单打独斗"的孤岛数据华丽转身为"抱团取暖"的宝藏。五、从"黑盒"到"白盒":算法可解释性的求索之路。

2024-08-20 16:43:20 563

原创 强化学习掌舵:探索温室环境控制的无限可能

2. 算法SymbiosisRL的决策可解释:通过将专家系统的规则嵌入RL的状态-动作空间,可实现 "可解释性" 与 "自适应性" 的双赢。2. 挑战:算法层面,如何设计更高效的探索策略、更精准的回报函数,以及如何平衡 "即时回报" 与 "长期收益",仍是亟待攻克的难题。何为强化学习(RL)?如何平衡 "性能" 与 "透明"、"自适应" 与 "可控"、"即时响应" 与 "长期优化",既是技术难题,也是伦理课题。同时,RL智能体在不断的 "试错" 中,也可以发现新的规律和策略,为知识库的更新迭代提供素材。

2024-08-19 13:52:57 1225

原创 YOLOv8改进方法

YOLOv8改进方法为解决复杂环境下番茄生长点花蕾检测的难题,本研究针对目标尺度多样、外观相似、遮挡严重等问题,从骨干网络(Backbone)、颈部结构(Neck)和检测头(Head)三个方面系统改进了YOLOv8的网络结构和损失函数,旨在提高其对弱小目标的检测精度和环境适应性。

2024-08-18 18:08:51 1103

原创 一个模型,多种作物:迁移学习如何提升设施农业AI模型效能

总之,Prompt学习让看似"难以捉摸"的农业知识变得"唾手可得",用"对话"串起模型、专家、农民的互信,用"提问"打通基础研究和应用开发的"最后一公里"。总之,迁移学习要做到"接地气",必须对农业生产系统的方方面面"吃透",让智能模型内化为新型农事要素,让认知智能体现为农业产业价值,以"AI+农业"的跨界融合,催生出设施农业的"新物种"。对比学习是当前自监督学习的"新贵"。与需要海量标注数据的"暴力"训练相比,迁移学习实现了对农业专家知识的"软继承",让稀缺的农业数据发挥出"以一当十"的效用。

2024-08-17 17:00:56 1020

原创 农业数据价值最大化,联邦学习来破题

而联邦学习,则好比派出一个"学习小组",到各地图书馆学习知识,并把学到的知识带回来向读者汇报。随着技术创新的不断深入,法规政策的日益健全,联邦学习将成为驱动农业数字化变革的新引擎,让"数据流"成为农业高质量发展的新动能。本文将重点解析联邦学习的基本原理,剖析其核心技术,并结合前沿进展和典型应用案例,展现其在农业大数据隐私保护与共享间的独特价值,分析其局限性,展望未来的发展图景。未来,围绕农业数据产权界定、全生命周期管理等,建立健全法律制度,明晰各参与主体的权责边界,将成为联邦学习可持续发展的"压舱石"。

2024-08-16 12:18:37 1224

原创 联邦学习:破解农业大数据共享的安全难题

FL 在农业中的应用并非没有挑战。本文将从联邦学习的原理入手,剖析其在农业大数据共享中的关键技术、应用实践和发展展望,为破解数据共享困局、重塑农业数字生态提供新的视角。其基本原理是,各参与方在本地利用自己的数据训练局部模型,然后通过安全的通信协议,如加密通信、差分隐私等,将局部模型的参数或梯度上传到中心服务器进行聚合,得到全局模型,再将全局模型分发给各参与方,进行新一轮的本地训练。而传统的数据脱敏技术,如数据加密、匿名化等,虽然在一定程度上保护了隐私,但也削弱了数据的价值,限制了数据分析的空间。

2024-08-16 11:19:42 977

原创 边缘智能:让每一个温室都成为计算中心

首先利用LLM从番茄百科、栽培手册等文本中抽取关键信息,识别出"番茄品种"、"栽培环境"、"生长阶段"、"病虫害"等核心实体,以及实体间的上下位、并列、因果等语义关系。每个节点可视为一个独立的强化学习智能体(Agent),通过"探索-利用"的闭环交互,持续优化本区域的环境调控策略,并通过联邦学习将经验汇聚,实现全局协同优化。而分散的农业设施,可通过知识共享和策略迁移,突破场景割裂的藩篱。环境管控是设施农业的核心,但传统的环境调控大多基于专家经验,或简单的反馈控制算法,难以应对复杂环境下作物生长的动态变化。

2024-08-14 18:38:08 1053

原创 融合视觉、传感与AI,多模态感知技术如何赋能温室作物健康管理

例如,在番茄种植中,植物学家可以根据自身经验,对不同生长阶段的最优环境参数进行标注,再利用RLHF算法训练一个模仿专家策略的智能模型,使其能够根据植株实时状态,自主调节温室设备,让番茄始终处于"舒适区"生长。这样,学生模型可以继承教师模型的归纳偏置,又能在更大规模数据上进行训练,从而获得更强的泛化性能。例如,某研究所开发了一套基于高光谱成像和区块链技术的果蔬溯源平台,通过扫描果蔬表面的化学"指纹",即可解析其生长环境、采摘时间、物流温控等关键信息,再上链存证,形成一本"电子身份证",方便消费者追溯查验。

2024-08-13 14:46:56 954

原创 多模态感知:打造温室作物的全方位“健康档案“

本文将聚焦前沿算法、优化方案、创新方法等维度,全面解析多模态感知技术在温室种植中的应用,展望其赋能数字农业、智慧农业的广阔前景,为我国温室产业高质量发展提供新的思路。边缘计算是多模态感知走向应用的另一助推器。水肥一体化是现代温室的重要特征,但在复杂的土壤-作物系统中,如何在满足作物需求的同时,实现水肥投入的减量增效,是一大难题。多模态感知根据作物冠层图像反映的长势和生理状态,预测不同发育阶段的环境需求,并实时监测温室温湿度、光照等参数,通过深度强化学习动态优化调控策略,使环境条件在局部波动中整体趋于最优。

2024-08-13 14:42:59 1028

原创 新专利:温室土壤温湿度预测模型构建方法和程序产品

近日,在北京市农林科学院智能装备技术研究中心的 于景鑫 、郑文刚 、王利春 、徐凡、魏晓明 、郭文忠等发明人持续攻关下,一种温室土壤温湿度预测模型构建方法喜获国家发明专利授权(专利号:ZL 2024 1 0661426.5),构建土壤之下的"晴雨表",为温室环境调控插上了"智慧芯片"。土壤是作物的"摇篮",是联结温室内外环境的"纽带"。课题组另辟蹊径,将深度强化学习引入特征选择,让模型自主学习,根据不同的预测时域和季节,动态优化输入特征的组合权重,就像让模型拥有了自己的'选择器',对海量数据进行优选。

2024-08-13 08:12:01 438

原创 新专利:面向智慧灌溉多源信息的数据库构建系统、 方法及设备

在数据"云"端,利用时空卷积神经网络、四维数据立方体等模型实现多模态数据的智能"编织"和高效存储,数据规模可达PB级;与此同时,还设计了数据质量保障机制,利用孤立森林、局部异常因子等算法,对"脏数据"进行自动"体检"和"修复",让数据更加"优质可控"。接下来,该团队将加快专利成果转化,面向水资源管理、高标准农田建设、智慧农业园区等重大需求,开发智慧灌溉大数据综合应用平台,实现农情监测、墒情预警、灌溉预报等多场景应用,并为农业主管部门、涉农企业、广大农户等提供数据服务,用数据驱动农业高质量发展。

2024-08-12 15:58:47 829

原创 单细胞组学与RNA转录组技术的深度对比:揭示基因表达的微观与宏观世界

*单细胞组学**则将朝着更高分辨率、更高通量的方向发展,特别是在空间转录组学(spatial transcriptomics)和单细胞多组学(single-cell multiomics)等新兴领域,研究者将能够在更细致的空间和时间尺度上探究生物系统的复杂性。**RNA转录组技术**的分辨率相对较低,因为它是基于群体细胞的平均信号。**RNA转录组技术**通常分析的是一个群体的细胞或组织样本的平均基因表达水平。**单细胞组学**则提供了极高的分辨率,因为它分析的是单个细胞的基因表达。

2024-08-09 22:48:36 445

原创 灌溉数据同化方法、装置、电子设备及存储介质

随后,专利又用基于图神经网络的注意力机制(GNN-Attention)和自适应优化技术(GNN-Adaptive Optimization),通过深度学习网络,对动静数据图进行进一步提炼和优化,最终得到一幅优化的同化数据图。这是灌溉领域在解决多源异构数据融合方面实现的突破,填补了技术空白,对于提升灌溉领域的科技创新能力,保障农业水资源高效利用和粮食安全,具有重要意义。该专利的独特之处,在于将前沿的人工智能技术引入灌溉领域,为海量异构数据赋予了"思考"的能力。而这,正是智慧农业时代对灌溉提出的新要求。

2024-08-08 15:06:07 457

原创 土壤空间温湿度预测新专利获授权,破解土壤“水热密码“

正是这种多维视角的融合,赋予了该系统对土壤的"洞察之眼"和"智慧大脑",使其能够实现全域覆盖、全层探测、全时感知。该技术犹如一位"数字农学家",能够透过"数据"的视角洞察土壤,为每寸土地都绘制出一幅"专属"的水分、养分地图,从而实现因地制宜、对症下药的精准养分管理。AutoML则像"诸葛亮"一样运筹帷幄,让模型参数能够千变万化、对症下药,确保在形势多变的农田"战场"上,为每个时空坐标都部署最优"兵力"。它并非是一个简单的土壤"体检工具",而是一个集成化、体系化的"综合诊疗系统"。"民以食为天,食以土为本。

2024-08-08 14:20:20 438

原创 AI赋能数字孪生:智能温室管理的技术革命与产业变革

设施农业,尤其是智能温室,作为集约化、高效率农业生产的代表,正面临前所未有的机遇与挑战。我们将聚焦最前沿的AI技术,如大语言模型(LLM)、深度强化学习(DRL)等,分析它们如何与数字孪生技术协同,推动智慧农业的技术变革和产业升级。在智能温室管理中,数字孪生系统构建了一个与实体温室高度吻合的计算机模型,涵盖温室结构、环境参数、作物生长状态等多维信息。这一虚拟孪生体不仅是静态的数字镜像,更是一个动态演化的智能系统,能够实时反映温室内的各种变化,并通过AI算法进行预测和决策优化。

2024-08-07 19:11:22 1052

原创 虚实共生:数字孪生技术引领设施农业新未来

这一虚拟孪生体不仅是实体温室的数字化镜像,更是一个动态演化的智能系统,能够实时反映温室内的各种变化,并通过AI算法进行预测和决策优化。未来,随着AI技术的不断进步和跨学科合作的深入,我们有理由相信,数字孪生将成为推动智慧农业发展的核心引擎,为全球粮食安全和农业现代化做出重要贡献。此外,我们还集成了增强现实(AR)技术,基于SLAM(Simultaneous Localization and Mapping)算法,实现了虚拟信息与实体温室的精准叠加,为管理人员提供了直观的可视化决策支持。

2024-08-07 19:07:13 901

原创 从像素到丰收:计算机视觉技术如何革新设施农业

随着人工智能技术的飞速发展,计算机视觉作为其中最为活跃的分支,正在为设施农业的数字化、智能化升级带来全新的解决方案。本文将深入探讨计算机视觉技术在设施农业生产各环节中的创新应用,揭示其变革传统农业模式、重塑产业价值链的巨大潜力。

2024-08-06 11:17:26 1094

原创 “懂农业、会聊天“的AI助力农业知识智能化传播

数字化浪潮迭起,新一轮农业科技革命蓄势待发。NLP技术作为人工智能的排头兵,正在为传统农业插上腾飞的翅膀。ChatGPT、文心一言等"AI明星"频频刷屏,让我们真切感受到NLP技术非凡的创新活力。而将NLP与设施农业深度融合,就是要让前沿科技"飞入寻常百姓家",为亿万农民的生产生活带去切实的改变。

2024-08-05 09:45:53 1178

原创 听,LLM在“说话“:智慧农场开启农业知识传播新范式

以大语言模型(LLM)为代表的自然语言处理技术,正以其强大的知识理解、获取和表达能力,为知识传播开辟新的可能。本文将从LLM的技术原理出发,探寻其在设施农业知识服务中的创新应用,展望人工智能重塑农业知识图景的未来图景。

2024-08-05 09:32:21 1310

原创 当AIGC走进温室大棚:AI+“种菜“的前世今生

尤其是随着设施农业的快速发展,如何在人工可控的大棚环境实现精准高效的作物管理,已然成为智慧农业亟待攻克的难题。将AIGC引入智慧农业,有望显著提升传统农业的信息化、自动化、智能化水平,破解农业生产中的诸多难题。作为人工智能领域的明星技术,AIGC通过大规模预训练模型,再结合少量任务相关数据微调,即可生成与任务高度匹配的文本、图像、语音等多模态内容。再次,农业知识的获取成本高,如何将专家经验与数据驱动的AIGC模型有机融合,也是一大难题。下面,就让我们走进AIGC赋能的未来农场,体验一场想象力的盛宴吧。

2024-08-04 11:17:01 1031

原创 AIGC赋能智慧农业:用AI技术绘就作物生长新蓝图

农业机器人可以根据AIGC生成的作物生长模型,实现全自动的农事操作;通过分析AIGC生成的作物生长图像,农业专家和智能算法就可以及时发现作物生长过程中的异常情况,并根据图像反映的长势、病虫害等信息,优化灌溉、施肥、打药等农事操作,最终实现农田的精准管理。比如,我们可以用ControlNet技术,通过简单的笔触描述,就生成所需的田间场景,然后利用Segment Anything等语义分割技术,自动标注出作物、土壤、农具等对象,最后再将生成模型与作物生长模型结合,就可以得到一幅"有血有肉"的作物生长全景图。

2024-08-04 11:00:39 1035

原创 从艺术创作到作物生长,农业AI迎来“GPT“时刻

本文将详细剖析大模型赋能AutoML的前沿架构和关键技术,展望"AI+农业"的发展新图景。

2024-08-03 08:29:41 1017

原创 设施农业智能化新引擎:AutoML让复杂农业算法唾手可得

本文将深入剖析AutoML的前沿理论和关键技术,并探索其在设施农业领域的应用实践,为我国农业现代化注入新动力。

2024-08-03 08:11:54 1190

原创 设施农业“AutoML“时代:大模型自动调参,让农业算法模型更简单易用

本文将深入探讨LLM和AutoML在设施农业中的应用前景,揭示大模型如何通过自动调参,让农业算法模型的开发和使用变得更加简单易行,为设施农业的智能化升级赋能。

2024-08-03 07:55:08 809

原创 AIGC重塑设施农业:让农事操作更智能,生产效率更高

大模型通过对比分析不同种植方案的投入产出效果,结合高产种植户的操作日志,进行关键要素挖掘和规律总结,形成设施蔬菜种植的"最佳实践"。尤其是大语言模型(Large Language Model,LLM)技术的崛起,其强大的语言理解和知识汇聚能力,为设施农业智能化发展带来了新的想象空间。大模型还可充当"数据融合的枢纽",汇聚和分析物联网传感器采集的海量数据。通过分析棚内视频流,实时检测植株长势、病虫害发生等状况,再借助大模型强大的推理决策能力,就可实现一套闭环的"感知-决策-执行"系统,全面把控产量和品质。

2024-08-02 09:39:08 782

原创 设施农业的“GPT时刻“:大模型重塑农事操作,提升农业生产效率新高度

让我们共同期待,大模型这把"智慧农业"的金钥匙,为设施农业插上腾飞的翅膀,让农业生产效率以智能化的方式不断刷新高度。未来,农技专家与AI系统将密切协作,农业机器人将在大模型的指挥下高效作业,农事管理决策将在海量数据支撑下精准施策,设施农业将在人机协同中实现前所未有的智能化水平。大模型凭借其强大的语言理解和生成能力,有望在农事操作中发挥重要作用,为设施农业的智能化升级赋能,开启农业生产效率提升的新高度。且农业生产周期较长,如何在时间维度上对环境和作物的动态变化建模,也是大模型应用于设施农业需要攻克的难题。

2024-08-02 09:32:47 660

原创 从表型感知到全链路贯通:数字孪生与LLM重塑设施农业新范式

数字孪生与大语言模型引领的技术变革大潮正席卷而来,这是设施农业转型升级和跨越发展的重大历史机遇。农业科技工作者要立足产业需求,紧跟前沿动态,加快多学科交叉融合,探索数字孪生、LLM等新技术在农业领域的创新应用场景与实施路径,形成可复制、可推广的数字化运营新模式,以科技赋能产业变革。( 于景鑫 北京市农林科学院智能装备技术研究中心)

2024-08-01 17:04:03 520

原创 “数字孪生+大模型“:打造设施农业全场景数字化运营新范式

数字孪生和大语言模型是智慧农业的"新基建",二者融合将从体系架构、知识积累、策略优化等方面为设施农业的数字化转型提供坚实支撑。站在产业变革的风口,农业科技工作者应紧跟时代步伐,拥抱前沿技术,以开放创新的姿态探索AI在农业领域的应用场景和落地路径。唯有如此,方能乘势而上,助推设施农业实现高质量发展。让我们携手并进,用"数字孪生+大模型"打造设施农业的数字化运营新范式,共同开创智慧农业的美好未来!(于景鑫 北京市农林科学院智能装备技术研究中心)

2024-08-01 16:45:56 1340

原创 北京农科院智能施肥新技术为田间地头“把脉开方“

近日,北京市农林科学院智能装备技术研究中心于景鑫、曲明山、单飞飞、兰壬苹、史凯丽、郑楷等发明人研发的"智能施肥配方决策方法、装置、设备、介质及程序产品"获得国家发明专利授权(专利号:ZL 2024 1 0148394.9),施肥有望告别"靠天吃饭",为科学精准、绿色高效的智能时代提供技术支持。该系统集成了作物生长模型、环境信息感知、机器学习等多项前沿技术,能够像"千里眼""顺风耳"一样,实时监测分析土壤墒情、苗情长势等数据,预判作物的养分需求走势,从而精准制定施肥処方,做到让每一粒肥料都发挥出最大效用。

2024-08-01 10:15:30 1015

原创 大模型助力设施农业:技术融合与产业优化的未来之路

例如,通过分析历史数据和实时数据,大模型可以预测气候变化对作物生长的影响,提前调整温室内的环境条件。通过对农业全产业链的分析,大模型可以识别出生产中的瓶颈和改进点,从而提高整个产业链的效率和效益。比如,大模型可以优化农产品的供应链管理,减少生产到市场的时间,降低物流成本,提升农产品的市场竞争力。总之,设施农业与大模型的结合,不仅提升了农业生产的精确度和效率,也推动了农业智能化、数据化的发展。在未来,随着技术的进一步进步,大模型将在设施农业中发挥更加重要的作用,助力实现农业的可持续发展和智能化转型。

2024-07-31 21:39:29 360

原创 当AI遇上植物工厂,集装箱“新农田“里的“绿叶先锋”

该系统可针对不同生长阶段的作物,在综合考虑环境因素、品种特性、病虫害风险等多重变量的基础上,给出最优的种植决策方案,实现环境调控、营养管理、病虫害防治等环节的协同优化,从而达到提质增效、降本增效的目标。同时,团队还搭建了一个汇聚多源异构数据的知识图谱和专家系统,利用机器学习算法,可实现环境模型、生理模型、病虫害预警模型的自主学习和优化,不断提升系统的预测和决策能力。同时,系统还提供了多场景、多人角色的交互式智慧管理平台,实现了专家、管理者、操作员之间的协同与交互,提高了管理效率和决策水平。

2024-07-28 14:48:18 1109

原创 大语言模型赋能设施农业:透过“智慧大脑“看智能环境调控

在掌握了当前环境状态和未来变化趋势的基础上,如何制定出最优的调控策略,是智能环境调控的关键。传统的控制算法往往采用固定的阈值和规则,难以应对动态变化的环境。通过感知、预测、决策三个步骤的无缝衔接,LLM赋能下的"智慧大脑"可以实现温室环境的智能化、精细化调控。另一方面,基于LLM的调控策略优化,可以最大限度地发挥设施的生产潜力,在保证产量和品质的同时实现能源的高效利用。或许有一天,我们可以实现完全自主的环境调控,让"智慧大脑"根据作物生长的内在需求,自适应地调节环境参数,实现产量、品质、能效的动态平衡。

2024-07-27 16:49:49 1595

原创 设施农业遇见AIGC:大模型为每一个温室打造专属“智慧大脑“

而利用计算机视觉、语音识别等技术,再结合LLM的语义理解能力,我们可以实时捕捉温室内的多维度信息,并将其转化为结构化的数据。通过将LLM与物联网、自动化控制等技术深度融合,我们有望打造一个集感知、决策、执行于一体的"智慧大脑",让每一个温室都拥有定制化、实时响应的"管家"。将LLM与设施农业的领域知识相结合,我们就可以为每一个温室打造专属的"智慧大脑",从而实现更加智能化、精细化的生产管理。然而,设施农业的高效运转离不开精准的环境调控和及时的生产管理决策,这对从业者的专业知识和经验提出了很高的要求。

2024-07-27 16:43:43 1504

原创 聊天即服务:大语言模型驱动一切产业智能化

它对大语言模型的能力提出了更高的要求。其次,模型还需要具备更强的语义理解和上下文推理能力,能够准确把握对话的脉络,给出恰如其分的回应。未来的AI助手,应该能够根据每个用户的特点,调整自己的语气、词汇乃至逻辑思路,真正做到"因人而异"。相反,通过人机协同,让AI去处理重复性、程式化的任务,而把更多的创造性工作留给人类,才是更加明智的选择。在医疗领域,智能问诊系统能够通过对话初步判断病情,提供专业的就医建议......随着技术的进一步发展,我们有理由相信,几乎所有的服务场景都可以通过聊天的方式得以优化和再造。

2024-07-26 11:03:49 1655

原创 被大模型收录:未来工作意义的新定义

换言之,在大模型时代,信息的曝光度和影响力很大程度上取决于它在模型中的权重和排名。同时,我们也要警惕大模型带来的风险和挑战,在技术进步的同时,也要关注人的发展和社会的进步。只有在人机协作,共同进化的道路上,我们才能真正实现人工智能的美好愿景,创造一个更加智能、包容、可持续的未来。同时,我们也需要探索新的就业模式和社会保障体系,确保每个人在大模型时代都能找到自己的位置和价值。对于企业和个人而言,如何让自己的工作和信息被大模型收录,并在其中占据有利位置,成为了一个重要的课题。

2024-07-26 10:53:22 417

原创 产量预测“新引擎“诞生记:从常规作物到特色作物的“学习迁移“

接着,用元学习的方法,使这个基础模型具备快速适应新作物、新场景的能力。近日,北京市农林科学院智能装备技术研究中心郑文刚、张钟莉莉、杨林楠、于景鑫、郜鲁涛、单飞飞等发明人共同研发的一项发明专利正式获得国家知识产权局授权,专利号为ZL 2024 1 0176207.8,该专利提出了一种全新的特色农作物产量预测方法,有望让茶叶、葡萄等特色农产品的丰歉预报更加智能化。通俗地说,就是让产量预测模型像一个"聪明的学生",能根据不同作物数据的质量和预测难度,自主调整学习策略和优化路径,直至获得最佳的预测效果。

2024-07-26 08:57:23 6428

Arcglobe三维数据查询与展示

Arcglobe三维数据查询与展示

2013-10-11

EngineApplication

完整实现arcgis10 开发文档中的所有功能!值得下载!

2013-10-11

ArcGIS 10 影像分及在ArcGIS Engine中的处理

ArcGIS 10 影像分及在ArcGIS Engine中的处理

2013-10-11

ArcEngine地图图片输出

ArcEngine地图图片输出

2013-10-11

c#编程百例

经典的c#开发代码 ,适合初学者,源于c#开发百例这本书,已经绝版

2013-03-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除