- 博客(24)
- 资源 (18)
- 收藏
- 关注
转载 随机梯度下降(SGD)、批量梯度下降(BGD)、小批量梯度下降(MSGD)
转自:https://www.2cto.com/net/201610/557111.html接触过神经网络的人都知道,网络的训练是其核心,本人在读书时接触的是BP神经网络,那时写的代码训练样本量不大,没有注意到题目所列出的这些训练方式,偶尔也曾看到了 “批量梯度下降”的名词,却并没有深入研究它的实现过程。样本是深度学习的主要学习来源,其样本量动则百十万个,再加上其结构和BP网络的不同,虽然在大理论...
2018-02-28 14:49:40 2269
原创 R odbc连接mysql
在Windows下配置ODBC(开放数据库连接),具体步骤如下:(1)R下载RODBC包,安装好。(2)在http://dev.mysql.com/downloads/connector/odbc下载mySQL ODBC,安装好。(3)Windows:控制面板->管理工具->数据源(ODBC)->双击->添加->选中mysqlODBC driver一项填写:data source
2018-01-03 15:03:46 572
转载 通俗理解卷积神经网络
转自:http://blog.csdn.net/v_july_v/article/details/518124591 前言 2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。 本博客内写过一些机器学习相关
2017-11-06 10:35:46 469
转载 梯度下降算法
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一。1. 梯度 在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的偏导数以向量的形式写出来,就是梯度。比如函数f(x,y), 分别对x,y求偏导数,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,简称grad f(x,y)或者▽f(x,y)。对于在点(x
2017-11-01 10:00:18 439
原创 Win7环境下tensorflow环境搭建
问题:在已经存在python2.7的环境下,搭建tensorflow。由于tensorflow支持的python最低版本为3.5,而原来的python环境又不想卸载,可以通过以下步骤来完成(此处以安装3.5版本为例):Step1. 打开cmd窗口, 创建python3.5环境,(p35为环境的名称)conda create -n p35 python=3.5
2017-10-31 16:19:18 541
转载 scikit-learn随机森林调参小结
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结。本文就从实践的角度对RF做一个总结。重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点。1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归
2017-10-31 09:22:02 1082 1
转载 Bagging与随机森林算法原理小结
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。本文就对集成学习中Bagging与随机森林算法做一个总结。 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力
2017-10-31 09:20:31 496
转载 scikit-learn决策树算法类库使用小结
1. scikit-learn决策树算法类库介绍 scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面就对DecisionTreeClassifi
2017-10-30 16:53:55 372
转载 集成学习之Adaboost算法原理小结
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系。前者的代表算法就是是boosting系列算法。在boosting系列算法中, Adaboost是最著名的算法之一。Adaboost既可以用作分类,也可以用作回归。本文就对Adaboost算法做一个总结。1. 回顾boo
2017-10-30 15:36:12 327
转载 scikit-learn Adaboost类库使用小结
文章转自:http://www.cnblogs.com/pinard/p/6136914.html在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结。这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结。1. Adaboost类库概述 scikit-lear
2017-10-30 15:29:23 295
转载 python中的UnicodeEncodeError和UnicodeDecodeError
转自:http://blog.csdn.net/u011089523/article/details/52356813【背景】问题参见:python2.7 urllib2 抓取新浪乱码中的:报错的异常是 UnicodeDecodeError: ‘gbk’ codec can’t decode bytes in position
2017-10-30 09:45:01 1086
转载 python正则化
原文转自:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html1. 正则表达式基础1.1. 简单介绍正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语
2017-10-24 17:39:34 6464
原创 Chrome 及驱动各版本下载地址
https://www.portablesoft.org/google-chrome-legacy-versions/
2017-10-18 10:27:10 4450
转载 深入解析Cookie技术
原文转自:http://www.freebuf.com/articles/web/42802.html0×00 引言在Web技术的发展史上,Cookie技术的出现是一次重大的 变革。但是, Cookie技术又是一项非常有争议的技术,从它诞生之日起就成了广大网络用户和Web开发人员的一个争论焦点,原因不是Cookie的功能太弱,而是认为Cookie的使用会对网络用户的隐私信息构成
2017-10-18 09:34:10 9940 1
原创 python输出Unicode和Str连接的字符串
当Unicode和字符串连接输出时,会出现编码错误:UnicodeDecodeError: 'ascii' codec can't decode byte 0xe8 in position 7: ordinal not in range(128)解决方法:a=u'Example'utf8string = a.encode("utf-8") print "验证码:"+utf8str
2017-10-17 15:16:05 1347
原创 python md5加密方法
import hashlibm2 = hashlib.md5() m2.update('111122') print m2.hexdigest() 结果:‘0b7da663c8a1ee358aa8dbb6e55d0d2b’
2017-10-12 09:36:40 1279
原创 pytesseract Windows Error 6错误的解决办法
错误信息:Traceback (most recent call last): File "D:\tests\test_pytesseract.py", line 30, in print(pytesseract.image_to_string(img)) File "C:\Python27\lib\site-packages\pytessera
2017-10-09 23:09:49 1463
原创 spyder2.7启动cmd窗口闪退的解决办法
spyder2.7启动时,cmd窗口闪退,在cmd下运行 spyder命令,出现以下错误:class TreeBuilderForHtml5lib(html5lib.treebuilders._base.TreeBuilder):AttributeError: 'module' object has no attribute '_base'解决办法:要升级html5
2017-10-09 13:45:24 2837
转载 python 实现决策树画图
文章参考自:http://blog.csdn.net/wzmsltw/article/details/51039928# -*- coding: utf-8 -*-"""Created on Wed Sep 27 14:52:51 2017@author: Administrator"""import matplotlib.pyplot as plt decisionNode
2017-09-27 15:00:37 9385 2
原创 python读取CSV文件时的路径
python读取CSV文件方法:方法1.可先用以下代码查看当前工作路径,然后将CSV文件放在该路径下。import osos.getcwd()方法2.(绝对路径)df=pd.read_csv('C:/Users/Administrator/Desktop/4444.csv')
2017-09-27 10:31:15 52040 1
转载 决策树之CART算法
原文转自:点击打开链接介绍 CART是在给定输入变量X条件下,输出随机变量Y的条件概率分布的学习方法。 CART假设决策树是二叉树,内部节点特征取值为“是”或“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样决策树等价于递归的二分每个特征(即使数据有多个取值,也把数据分成两部分) CA
2017-09-19 16:42:00 1413
转载 机器学习之正则化
原文转载自:http://www.cnblogs.com/jianxinzhou/p/4083921.html1. The Problem of Overfitting1还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图。如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型。我们看看这些数据,很明显,随着房
2017-09-13 08:52:43 285
转载 神经网络中 BP 算法的原理与 Python 实现源码解析
作者 EdvardHua最近这段时间系统性的学习了BP算法后写下了这篇学习笔记,因为能力有限,若有明显错误,还请指出目录什么是梯度下降和链式求导法则神经网络的结构BP算法中的执行流程(前向传递和逆向更新)输出层和隐藏层权重以及偏置更新的推导Python 实现源码解析手写数字识别实例训练神经网络中有哪些难点(TODO)梯度下降和链式求导法则假设我们
2017-09-07 10:55:16 1387
火狐浏览器驱动(32&64;)
2017-10-17
精通Oracle.10g.PLSQL编程
2017-09-15
深度学习 中文版
2017-09-08
自然语言处理工具包_nltk-3.2.4
2017-09-08
u.data_(Python数据挖掘入门与实践第四章电影推荐算法数据集)
2017-09-07
ionosphere数据集——Python数据挖掘入门与实践第三章数据
2017-09-07
numpy-1.13.1+mkl-cp27-cp27m-win_amd64.whl
2017-09-07
Python数据挖掘入门与实践(中文完整版)
2017-08-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人