计算机视觉
文章平均质量分 90
善plusplus
上善若水,天才就是无止境的吃苦耐劳。
展开
-
《MLP-Mixer: An all-MLP Architecture for Vision》2021
摘要:卷积网络CNN是计算机视觉中的必用模型。最近,基于注意力机制的网络结构,比如视觉Transformer,也越来越流行。在这篇文章中我们将展示,虽然卷积和注意力机制是获得优良性能的必要结构,但它们都不是必须的。我们提出MLP-Mixer,一个仅仅基于多层感知机(MLPs)的结构。MLP-Mixer包含两种类型的网络层:一种是独立应用于图像patch的多层感知机MLPs(比如 "混合"每个局部特征)。另一个是应用于交叉patches的多层感知机(比如 “混合”空间信息)。当MLP-Mixer在大的数据集上原创 2021-05-11 21:26:10 · 1652 阅读 · 0 评论 -
【重参数化】《Diverse Branch Block: Building a Convolution as an Inception-like Unit》 2021
摘要:我们提出一种通用的卷积网络构造块用来在不增加任何推理时间的前提下提升卷积网络的性能。我们将这个块命名为分离分支块(Diverse Branch Block)。通过结合不同尺寸和复杂度的分离分支(包括串联卷积、多尺度卷积和平均池化层)来增加特征空间的方法,它提升了单个卷积的表达能力。完成训练后,一个DBB(Diverse Branch Block)可以被等价地转换为一个单独的卷积操作以方便部署。不同于那些新颖的卷积结构的改进方式,DBB让训练时微结构复杂化同时维持大规模结构,因此我们可以将它作为任意结构原创 2021-04-08 14:46:21 · 3686 阅读 · 0 评论