【算法基础】二叉排序树

这篇博客探讨了二叉排序树的查找算法,其时间复杂度与二分查找相当,为O(logn)。随后,文章介绍了如何在二叉排序树中执行插入操作。虽然删除操作具有挑战性,特别是当被删除节点拥有左右子树时,但文章并未详细展开讨论。
摘要由CSDN通过智能技术生成
3 二叉排序树
二叉排序树相对于动态查找(也就是查找过程中需要插入或删除),对于有序表来讲,查找确实有着较高的效率,但是,一旦需要对表中的元素进行插入删除操作时,效率就变得很低。基于这种思想,二叉排序树被提出来了。这是一种查找效率等于有序表,同时删除查找效率又高于有序表的一种存储结构。
二叉树的数据结构我们已经在之前学习过了。下面简单贴出代码:

/*二叉排序树的存储结构,也就是二叉树的结构*/
typedef struct BiTNode
{
	int data;
	struct BiTNode *lchild, *rchild;
}BiTNode,*BiTree;
好,那我们如今有了二叉排序树的存储结构了,先来完成二叉排序树的查找功能。也就是说我们先假设已经建成了一个二叉排序树,我们已经知道了二叉树的递归遍历,那接下来的查找功能,也就很容易实现了。
Status SearchBST(BiTree T, int key, BiTree f, BiTree *p)
{
	if(!T)			//查找不成功
	{
		*p = f;
		return FALSE;
	}
	else if( key == T->data)	//查找成功
	{
		*p = T;
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值