/*
可以算是一道数学题吧。如果知道皮克定理就好写多了。
皮克定理说明了其面积S和内部格点数目a、边上格点数目b的关系:S = a + b/2 - 1。
根据三角形面积公式求出S。如果知道了b,那么三角形内部格点数目a也就求出来了。
可以证明,一条直线((0,0),(n,m))上的格点数等于n与m的最大公约数+1。
即b=gcd(n,m)+1. gcd(n,m)为n与m的最大公约数。 代入皮克公式,即可求出a的值。
refer to byvoid;
*/
/*
Executing...
Test 1: TEST OK [0.011 secs, 3500 KB]
Test 2: TEST OK [0.000 secs, 3500 KB]
Test 3: TEST OK [0.000 secs, 3500 KB]
Test 4: TEST OK [0.000 secs, 3500 KB]
Test 5: TEST OK [0.000 secs, 3500 KB]
Test 6: TEST OK [0.000 secs, 3500 KB]
Test 7: TEST OK [0.000 secs, 3500 KB]
Test 8: TEST OK [0.011 secs, 3500 KB]
Test 9: TEST OK [0.000 secs, 3500 KB]
Test 10: TEST OK [0.000 secs, 3500 KB]
Test 11: TEST OK [0.000 secs, 3500 KB]
Test 12: TEST OK [0.000 secs, 3500 KB]
All tests OK.
*/
/*
ID: haolink1
PROG: fence9
LANG: C++
*/
//#include <iostream>
#include <fstream>
#include <stdlib.h> /* abs */
using namespace std;
ifstream fin("fence9.in");
ofstream cout("fence9.out");
int Gcd(int a, int b){
int tmp;
while(b > 0){
tmp = a % b;
a = b;
b = tmp;
}
return a;
}
int Compute(int n,int m,int p){
double S,b;
S = p * m / 2.0;
int w1 = Gcd(m,n);
int w2 = Gcd(m,abs(n-p));
b = w1 + w2 + p;
return S - b/2.0 + 1;
}
int main(){
int n = 0,m = 0,p = 0;
fin >> n >> m >> p;
cout << Compute(n,m,p) << endl;
return 0;
}
USACO 3.4 Electric Fence (fence9)
最新推荐文章于 2020-10-02 18:02:52 发布