第五十八讲:动态规划优化(四边形不等式优化)
内容概述
四边形不等式优化是一种用于优化动态规划问题的技术,特别适用于那些状态转移方程中包含四边形不等式的情况。通过使用四边形不等式优化,可以将动态规划的时间复杂度从O(n^3)优化到O(n^2)。
关键概念
- 四边形不等式:对于任意
i <= j <= k <= l
,满足w(i, l) + w(j, k) <= w(i, k) + w(j, l)
,其中w(i, j)
是一个代价函数。 - 单调性:对于任意
i <= j <= k <= l
,满足m[i][j] <= m[i][k] <= m[j][l]
,其中m[i][j]
是最优分割点。 - 状态定义:
dp[i][j]
表示从位置i
到位置j
的子问题的解。 - 状态转移方程:根据具体问题定义状态转移方程。
- 初始条件