《算法零基础100讲》之 第五十八讲:动态规划优化(四边形不等式优化)

第五十八讲:动态规划优化(四边形不等式优化)

内容概述

四边形不等式优化是一种用于优化动态规划问题的技术,特别适用于那些状态转移方程中包含四边形不等式的情况。通过使用四边形不等式优化,可以将动态规划的时间复杂度从O(n^3)优化到O(n^2)。

关键概念
  • 四边形不等式:对于任意 i <= j <= k <= l,满足 w(i, l) + w(j, k) <= w(i, k) + w(j, l),其中 w(i, j) 是一个代价函数。
  • 单调性:对于任意 i <= j <= k <= l,满足 m[i][j] <= m[i][k] <= m[j][l],其中 m[i][j] 是最优分割点。
  • 状态定义dp[i][j] 表示从位置 i 到位置 j 的子问题的解。
  • 状态转移方程:根据具体问题定义状态转移方程。
  • 初始条件
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值