YOLOv8 是 Ultralytics 发布的最新版本,相比 YOLOv5,它在精度和速度上都有显著提升,同时支持目标检测、实例分割和姿态估计等多任务。以下是 YOLOv8 在自动驾驶中的详细说明及代码示例。
1. YOLOv8 在自动驾驶中的应用
YOLOv8 可以用于以下自动驾驶任务:
- 目标检测:检测车辆、行人、交通标志等。
- 障碍物检测:检测道路上的障碍物。
- 车道线检测:结合其他算法,辅助检测车道线。
- 实例分割:对目标进行像素级分割。
2. 环境准备
在开始之前,确保你的环境满足以下要求:
- Python 3.8 或更高版本。
- PyTorch 1.7 或更高版本。
- CUDA(如果使用 GPU 加速)。
安装依赖
bash
pip install ultralytics opencv-python matplotlib
3. 训练 YOLOv8 模型
步骤
- 准备数据集:
- 使用自动驾驶数据集(如 KITTI、BDD100K 或 COCO)。
- 数据集应包含图像和对应的标注文件(YOLO 格式)。
- 下载 YOLOv8 代码:
bash
pip install ultralytics
- 配置数据集:
- 在
data
目录下创建自定义数据集配置文件(如autonomous.yaml
)。 - 示例
autonomous.yaml
:yaml
train: path/to/train/images val: path/to/val/images nc: 3 # 类别数量 names: ['car', 'pedestrian', 'traffic_sign']
- 在
- 训练模型:
python
from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 使用 YOLOv8n 作为基础模型 # 训练模型 results = model.train(data='autonomous.yaml', epochs=50, imgsz=640, batch=16)
data
:数据集配置文件。epochs
:训练轮数。imgsz
:输入图像大小。batch
:批量大小。
4. 使用 YOLOv8 进行推理
训练完成后,可以使用训练好的模型进行目标检测。
代码示例
python
from ultralytics import YOLO
from PIL import Image
# 加载训练好的模型
model = YOLO('runs/detect/train/weights/best.pt')
# 加载图像
image_path = 'path/to/autonomous_driving_image.jpg'
image = Image.open(image_path)
# 进行推理
results = model(image)
# 显示结果
results[0].show()
# 保存结果
results[0].save('results.jpg')
# 打印检测结果
print(results[0].boxes)
5. 实时检测
YOLOv8 支持实时检测,可以用于自动驾驶的实时视频流处理。
代码示例
python
from ultralytics import YOLO
import cv2
# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')
# 打开摄像头或视频文件
cap = cv2.VideoCapture('path/to/video.mp4') # 或使用 0 打开摄像头
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 进行推理
results = model(frame)
# 显示结果
annotated_frame = results[0].plot()
cv2.imshow('YOLOv8', annotated_frame)
# 按下 'q' 退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放资源
cap.release()
cv2.destroyAllWindows()
6. 优化与部署
- 模型优化:
- 使用 TensorRT 或 ONNX 加速推理。
- 使用量化技术减小模型大小。
- 部署:
- 将模型部署到嵌入式设备(如 NVIDIA Jetson)。
- 使用 Flask 或 FastAPI 提供 API 服务。
7. 示例数据集
- KITTI:The KITTI Vision Benchmark Suite
- BDD100K:https://bdd-data.berkeley.edu/
- COCO:COCO - Common Objects in Context
总结
YOLOv8 是一种高效的目标检测模型,非常适合自动驾驶场景。通过训练自定义数据集,你可以实现车辆、行人、交通标志等目标的实时检测。