YOLOv8 「①自动驾驶」 详细说明及代码示例

YOLOv8 是 Ultralytics 发布的最新版本,相比 YOLOv5,它在精度和速度上都有显著提升,同时支持目标检测、实例分割和姿态估计等多任务。以下是 YOLOv8 在自动驾驶中的详细说明及代码示例。  


1. YOLOv8 在自动驾驶中的应用

YOLOv8 可以用于以下自动驾驶任务:

  • 目标检测:检测车辆、行人、交通标志等。
  • 障碍物检测:检测道路上的障碍物。
  • 车道线检测:结合其他算法,辅助检测车道线。
  • 实例分割:对目标进行像素级分割。

2. 环境准备

在开始之前,确保你的环境满足以下要求:

  • Python 3.8 或更高版本。
  • PyTorch 1.7 或更高版本。
  • CUDA(如果使用 GPU 加速)。
安装依赖

bash

pip install ultralytics opencv-python matplotlib

3. 训练 YOLOv8 模型

步骤
  1. 准备数据集
    • 使用自动驾驶数据集(如 KITTI、BDD100K 或 COCO)。
    • 数据集应包含图像和对应的标注文件(YOLO 格式)。
  2. 下载 YOLOv8 代码

    bash

    pip install ultralytics

  3. 配置数据集
    • 在 data 目录下创建自定义数据集配置文件(如 autonomous.yaml)。
    • 示例 autonomous.yaml

      yaml

      train: path/to/train/images
      val: path/to/val/images
      nc: 3  # 类别数量
      names: ['car', 'pedestrian', 'traffic_sign']

  4. 训练模型

    python

    from ultralytics import YOLO
    
    # 加载预训练模型
    model = YOLO('yolov8n.pt')  # 使用 YOLOv8n 作为基础模型
    
    # 训练模型
    results = model.train(data='autonomous.yaml', epochs=50, imgsz=640, batch=16)
    • data:数据集配置文件。
    • epochs:训练轮数。
    • imgsz:输入图像大小。
    • batch:批量大小。

4. 使用 YOLOv8 进行推理

训练完成后,可以使用训练好的模型进行目标检测。

代码示例

python

from ultralytics import YOLO
from PIL import Image

# 加载训练好的模型
model = YOLO('runs/detect/train/weights/best.pt')

# 加载图像
image_path = 'path/to/autonomous_driving_image.jpg'
image = Image.open(image_path)

# 进行推理
results = model(image)

# 显示结果
results[0].show()

# 保存结果
results[0].save('results.jpg')

# 打印检测结果
print(results[0].boxes)

5. 实时检测

YOLOv8 支持实时检测,可以用于自动驾驶的实时视频流处理。

代码示例

python

from ultralytics import YOLO
import cv2

# 加载模型
model = YOLO('runs/detect/train/weights/best.pt')

# 打开摄像头或视频文件
cap = cv2.VideoCapture('path/to/video.mp4')  # 或使用 0 打开摄像头

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 进行推理
    results = model(frame)

    # 显示结果
    annotated_frame = results[0].plot()
    cv2.imshow('YOLOv8', annotated_frame)

    # 按下 'q' 退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

6. 优化与部署

  • 模型优化
    • 使用 TensorRT 或 ONNX 加速推理。
    • 使用量化技术减小模型大小。
  • 部署
    • 将模型部署到嵌入式设备(如 NVIDIA Jetson)。
    • 使用 Flask 或 FastAPI 提供 API 服务。

7. 示例数据集


总结

YOLOv8 是一种高效的目标检测模型,非常适合自动驾驶场景。通过训练自定义数据集,你可以实现车辆、行人、交通标志等目标的实时检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值