【YOLOv5/v7 添加注意力机制】 模块四十五 RepConvBottleneck模块详解

一、模块核心设计

1. 结构创新点
  • 三重重参数化

    mermaid

    graph TB
    A[输入] --> B[1x1降维卷积]
    B --> C[3x3深度卷积]
    C --> D[1x1升维卷积]
    D --> E[+恒等映射]

  • 训练-推理差异
    • 训练时:完整Bottleneck结构(3个卷积层+残差)
    • 推理时:合并为单个3x3卷积
2. 与普通Bottleneck对比
</
特性 常规Bottleneck RepConvBottleneck
参数量 固定 训练时更多
推理速度 较慢 快30%以上
AP提升 - +0.3~0.8
适合场景 高精度需求 端侧部署
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路飞VS草帽

一毛钱带我飞~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值