一、模块核心设计
1. 结构创新点
- 三重重参数化:
mermaid
graph TB A[输入] --> B[1x1降维卷积] B --> C[3x3深度卷积] C --> D[1x1升维卷积] D --> E[+恒等映射]
- 训练-推理差异:
- 训练时:完整Bottleneck结构(3个卷积层+残差)
- 推理时:合并为单个3x3卷积
2. 与普通Bottleneck对比
特性 | 常规Bottleneck | RepConvBottleneck |
---|---|---|
参数量 | 固定 | 训练时更多 |
推理速度 | 较慢 | 快30%以上 |
AP提升 | - | +0.3~0.8 |
适合场景 | 高精度需求 | 端侧部署 |