如何判断一个二叉树是否为另一个二叉树的子树

本文介绍两种判断一棵树是否为另一棵树的子树的方法:递归算法和利用KMP算法进行序列化字符串匹配的方法。递归算法通过深度优先搜索进行节点值对比,而KMP算法则首先将两棵树序列化为字符串,再进行高效的模式匹配。
摘要由CSDN通过智能技术生成

1. 递归的方式

/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};*/
class Solution {
public:
    bool HasSubtree(TreeNode* pRoot1, TreeNode* pRoot2)
    {
         //递归的实现方式
        bool result=false;
        if(pRoot1==NULL||pRoot2==NULL)
            return false;
        if(pRoot1->val==pRoot2->val)
            result=getResult(pRoot1,pRoot2);//这里的递归是进入下面的函数!!!
        if(result==false)
            result=HasSubtree(pRoot1->left,pRoot2);//这里的递归是递归自己!!!
        if(result==false)
            result=HasSubtree(pRoot1->right,pRoot2);//这里的递归是递归自己!!!
        return result;
    }
    bool getResult(TreeNode* p1,TreeNode* p2){
        if(p1==NULL&&p2==NULL)
            return true;
        if(p1==NULL&&p2!=NULL)
            return false;
        if(p1!=NULL&&p2==NULL)
            return true;
        if(p1->val==p2->val)
            return getResult(p1->left,p2->left)&&getResult(p1->right,p2->right);
        else
            return false;
    }
};

递归的过程如上面所示,需要注意的是这是两个不同的递归过程!!!!

2. 序列化然后利用KMP算法进行模式串的匹配

KMP算法的时间复杂度为O(m+n),可以用均摊分析来证明。具体的证明可以查看http://www.matrix67.com/blog/archives/115。

普通的模式串匹配算法的时间复杂度为o(m*n)

/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};*/
class Solution {
public:
    bool HasSubtree(TreeNode* pRoot1, TreeNode* pRoot2)
       
    {
         if(pRoot1==NULL||pRoot2==NULL)
            return false;
         //先将两棵树进行序列化,然后进行模式串匹配!!!
        string s1,s2;
        getResult(pRoot1,s1);
        getResult(pRoot2,s2);
        //下面是KMP
        return getkmp(s1,s2);
    }
    void getResult(TreeNode* r,string& s){
        //采用先序遍历的过程,需要注意的是这里不需要#,只需要!!!!原因是如果带有#,那么对于s2来说,s1中包含的s2也许他的孩子并不是空,但是s2中叶节点的孩子
        //为空,这样会导致结果的错误!!!因为生成的字符串必然是不相等的,所以不需要#。
        if(r!=NULL)
            s=s+to_string(r->val)+"!";
        else{
            return;
        }
        getResult(r->left,s);
        getResult(r->right,s);
        return;  
    }
    bool getkmp(string s1,string s2){
        int* next=getnext(s2);
        int j = 0;
        int size=s1.length();
        int size2=s2.length();
        for (int i = 0; i < size; i++) {  
          while (j > 0 && s1[i] !=s2[j])  
                j = next[j];  
        if (s1[i] ==s2[j])  
            j++;  
        if (j == size2) {  
            return true;    
        }  
        }
        return false;
    }
    //求s1的next数组
   int* getnext(string b){
       int len=b.length();  
       int j=0;  
          
       int* next=new int[len+1];//next表示长度为i的字符串前缀和后缀的最长公共部分,从1开始  
       next[0]=next[1]=0;  
          
       for(int i=1;i<len;i++)//i表示字符串的下标,从0开始  
       {//j在每次循环开始都表示next[i]的值,同时也表示需要比较的下一个位置  
          while(j>0&&b[i]!=b[j])j=next[j];  
          if(b[i]==b[j])j++;  
             next[i+1]=j;  
       }      
       return next;  
    }
};

字符串匹配算法除了KMP之外还有BM等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值