题目:
Given an array of size n, find the majority element. The majority element is the element that appears more than ⌊ n/2 ⌋ times.
You may assume that the array is non-empty and the majority element always exist in the array.
我的思路:
首先想到的方法是排序,排序后的中位数则是要查找的数,但是这样的话时间复杂度为O(nlogn)
在看了discuss之后,想起来在《剑指offer》上也看过这道题,其中给出了两种思想,其中一种引入快排思想但是并未完全排序的O(n)的方法,另一种思路和discuss中给出的相仿。
discuss中的思路:
类似于对对碰的思想,由于待寻找的数字n出现的次数超过剩下所有数字的总和,初始设定一个数值n和次数,遍历数组,当与数值相同时次数加1,当与数值不同时次数减1;而当次数减少到0时,将次数重置为1并设置当前值为n。
例如:{1,2,1,2,1,2,1,1},1为待寻找的数字,则相当于前3对{1,2}都抵消了,只剩下最后的1了。
代码如下:
public class Solution {
public int majorityElement(int[] nums) {
//思路:出现次数超过一半的数字num出现的次数超过其他所有数字出现次数的总和
//时间复杂度O(n)
int i;
int num = nums[0];
int time = 1;
for(i = 1; i < nums.length; i++){
if(time == 0){
//次数减少到1时,重置次数并将num设置为该数字
num = nums[i];
time = 1;
}else if(nums[i] == num){
//与num相等时增加次数
time++;
}else{
time--;
}
}
return num;
}
}