——日记伴我成长
原始问题:有三根杆子A,B,C。A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至C杆:
1. 每次只能移动一个圆盘;
2. 大盘不能叠在小盘上面。
大家看图:
提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。
汉诺塔的题意比较容易理解,我们首先来分析下当A塔上有1,2,3个圆盘时,盘子的移动情况:
1. 当A塔中只有1个圆盘时,可将一个圆盘直接从A移动到C,移动步为1;
2. 当A塔中有2个圆盘时,可先将第一个移动到B,然后将第二个移动到C,然后再将B上的盘移动到时,移动完成。移动步数为3;
3. 当A塔中有3个圆盘时,这时情况将变得比较复杂。为了简化模型,可将A上的第一个圆盘和第二个圆盘考虑成一个圆盘,这时移动过程和A塔中有2个圆时是一样的。事实上,当A塔中圆盘数为3时,具体的移动步骤如下图所示,移动步数为7。
分析:当A塔中有3个圆盘时,为了将最大的圆盘移动到C塔里,需要借用B塔,此时,三个盘A、B、C分别为原塔,借用塔和目标塔。在将最大的圆盘移动到C 塔后,此时三个塔的状态为:A塔中无盘,B塔中有两个,从上到小为一小一大圆盘,C塔上为原A塔上最大的盘。为了将B塔中的两个圆盘移动到C塔上,需要借用A塔,此时三个盘A、B、C分别为借用盘,原盘和目标塔。当A借中原始盘数足够大时,A塔与B塔总在借用塔与原塔之间进行角色转换,即为了将A塔上n个圆盘移动到目标塔上,需要将n-1个圆盘先移动到借用盘上。
编码
汉诺塔的经典解法是利用递归的思想,即,为了将A塔(源塔)上n个圆盘移动到目标塔上,需要将n-1个圆盘先移动到借用塔上,然后再将A塔(源塔)上的第n个圆盘(也就是最大那个)移动到目标塔上。这样,编码就相对简单了。代码如下:
#include <stdio.h>
#include<stdlib.h>
#define _CRT_SECURE_NO_WARNINGS
int i = 1;//记录步数
void move(int n, char from, char to) //将编号为n的盘子由from移动到to
{
printf_s("第%d步:将%d号盘子%c---->%c\n", i++, n, from, to);
}
//第2,3,4个参数代表的意义为源塔,借用塔和目标塔
void hanoi(int n, char A, char B, char C)//这里的A、B、C分别为源塔,借用塔和目标塔
{
if (n == 1)
move(1, A, C);//只有一个盘子是直接将源塔上的盘子移动到目的塔
else
{
hanoi(n - 1, A, C, B);//先将源塔(这时为A)的前n-1个盘子借助借用塔(此时为C)移动到目标塔(此时为C)上
move(n, A, C); //将源(这时为A)塔上的最后一个圆盘移动到目标(此时为C)塔上,可以见到,C塔总是作为目标塔。
hanoi(n - 1, B, A, C);//最后将移动到借用塔上的n-1个盘子移动到目的塔上,此时B是源塔(上一步为借用塔),A为借用塔(上一步为源塔),参数的位置有变化,但相对位置的意义没有变
}
}
int main()
{
printf_s("请输入盘子的个数:\n");
int n;
scanf_s("%d", &n);
char x = 'A', y = 'B', z = 'C';
printf_s("盘子移动情况如下:\n");
hanoi(n, x, y, z);
getchar();
getchar();
return 0;
}