5532. 奇偶树

题目描述:

如果一棵二叉树满足下述几个条件,则可以称为 奇偶树 :

二叉树根节点所在层下标为 0 ,根的子节点所在层下标为 1 ,根的孙节点所在层下标为 2 ,依此类推。
偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增
奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减
给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true ,否则返回 false

示例 1:

在这里插入图片描述

输入:root = [1,10,4,3,null,7,9,12,8,6,null,null,2]
输出:true
解释:每一层的节点值分别是:
0 层:[1]
1 层:[10,4]
2 层:[3,7,9]
3 层:[12,8,6,2]
由于 0 层和 2 层上的节点值都是奇数且严格递增,而 1 层和 3 层上的节点值都是偶数且严格递减,因此这是一棵奇偶树。

示例 2:

在这里插入图片描述

输入:root = [5,4,2,3,3,7]
输出:false
解释:每一层的节点值分别是:
0 层:[5]
1 层:[4,2]
2 层:[3,3,7]
2 层上的节点值不满足严格递增的条件,所以这不是一棵奇偶树。

示例 3:

在这里插入图片描述

输入:root = [5,9,1,3,5,7]
输出:false
解释:1 层上的节点值应为偶数。

示例 4:

输入:root = [1]
输出:true

示例 5:

输入:root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17]
输出:true

提示:

树中节点数在范围 [1, 100000]
1 <= Node.val <= 1000000

解题思路:

首先想到的是层次遍历(切分每一层节点);

1)、分析奇偶树的成立条件,删选出不符合的条件;
首先是偶数行的数据必须为奇数,奇数行的数据必须为偶数:
(node->val & 1) == true 则可以知道是奇数,反之为偶数;
偶数行是从小到大,奇数行是从大到小;(严格递增以及严格递减):
难点:判断每层的第一个节点的val值;以此与前一个节点的val比较;

2)、三个不成立的条件:

 if ((cur & 1) != zt) return false ;
 if (cur == precur)   return false;
 if ((cur > precur) != zt)  return false ;
代码实现:
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isEvenOddTree(TreeNode* root) { 
        TreeNode* pre = root , *nextN = NULL ;
        queue<TreeNode*> que ;
        que.push(root) ;
        TreeNode* tmp = NULL ;
        bool zt = true ;
        int cur , precur = 0 ;
        while (!que.empty()) {
            tmp = que.front() ;
            que.pop() ;
            cur = tmp->val ;
            if ((cur & 1) != zt) return false ;
            if (cur == precur)   return false ;
            if ((cur > precur) != zt)  return false ;
            if (tmp->left) {
                que.push(tmp->left) ;
                nextN = tmp->left ;
            }
            if (tmp->right) {
                que.push(tmp->right) ;
                nextN = tmp->right ;
            }
            precur = cur ;
            if(!que.empty() && pre == tmp)
            {
                zt = (zt == true) ? false : true ;
                precur = zt ? (que.front()->val - 1) : (que.front()->val + 1)  ;
                pre = nextN ;
            }

        }
        return true ;
        
    }
};
复杂度计算:

时间复杂度: O(n)
空间复杂度: O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值