题目描述:
如果一棵二叉树满足下述几个条件,则可以称为 奇偶树 :
二叉树根节点所在层下标为 0
,根的子节点所在层下标为 1
,根的孙节点所在层下标为 2
,依此类推。
偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增
奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减
给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true
,否则返回 false
。
示例 1:
输入:root = [1,10,4,3,null,7,9,12,8,6,null,null,2]
输出:true
解释:每一层的节点值分别是:
0 层:[1]
1 层:[10,4]
2 层:[3,7,9]
3 层:[12,8,6,2]
由于 0 层和 2 层上的节点值都是奇数且严格递增,而 1 层和 3 层上的节点值都是偶数且严格递减,因此这是一棵奇偶树。
示例 2:
输入:root = [5,4,2,3,3,7]
输出:false
解释:每一层的节点值分别是:
0 层:[5]
1 层:[4,2]
2 层:[3,3,7]
2 层上的节点值不满足严格递增的条件,所以这不是一棵奇偶树。
示例 3:
输入:root = [5,9,1,3,5,7]
输出:false
解释:1 层上的节点值应为偶数。
示例 4:
输入:root = [1]
输出:true
示例 5:
输入:root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17]
输出:true
提示:
树中节点数在范围 [1, 100000]
内
1 <= Node.val <= 1000000
解题思路:
首先想到的是层次遍历(切分每一层节点);
1)、分析奇偶树的成立条件,删选出不符合的条件;
首先是偶数行的数据必须为奇数,奇数行的数据必须为偶数:
(node->val & 1) == true
则可以知道是奇数,反之为偶数;
偶数行是从小到大,奇数行是从大到小;(严格递增以及严格递减):
难点:判断每层的第一个节点的val值;以此与前一个节点的val比较;
2)、三个不成立的条件:
if ((cur & 1) != zt) return false ;
if (cur == precur) return false;
if ((cur > precur) != zt) return false ;
代码实现:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isEvenOddTree(TreeNode* root) {
TreeNode* pre = root , *nextN = NULL ;
queue<TreeNode*> que ;
que.push(root) ;
TreeNode* tmp = NULL ;
bool zt = true ;
int cur , precur = 0 ;
while (!que.empty()) {
tmp = que.front() ;
que.pop() ;
cur = tmp->val ;
if ((cur & 1) != zt) return false ;
if (cur == precur) return false ;
if ((cur > precur) != zt) return false ;
if (tmp->left) {
que.push(tmp->left) ;
nextN = tmp->left ;
}
if (tmp->right) {
que.push(tmp->right) ;
nextN = tmp->right ;
}
precur = cur ;
if(!que.empty() && pre == tmp)
{
zt = (zt == true) ? false : true ;
precur = zt ? (que.front()->val - 1) : (que.front()->val + 1) ;
pre = nextN ;
}
}
return true ;
}
};
复杂度计算:
时间复杂度: O(n)
;
空间复杂度: O(n)
;