- 博客(52)
- 收藏
- 关注
转载 (收藏)CV codes代码分类整理(CV codes代码分类整理合集 http://www.sigvc.org/bbs/thread-72-1-1.html)
一、特征提取Feature Extraction: SIFT [1] [Demo program][SIFT Library] [VLFeat] PCA-SIFT [2] [Project] Affine-SIFT [3] [Project] SURF [4] [OpenSURF] [Matlab Wrapper] Affine Covariant
2013-07-17 08:41:24 18157 1
转载 (收藏)经典的机器学习方面源代码库(非常全,数据挖掘,计算机视觉,模式识别,信息检索相关领域都适用的了)
http://www.cnblogs.com/kshenf/archive/2012/06/14/2548708.html今天给大家介绍一下经典的开源机器学习软件:编程语言:搞实验个人认为当然matlab最灵活了(但是正版很贵),但是更为前途的是python(numpy+scipy+matplotlib)和C/C++,这样组合既可搞研究,也可搞商业开发,易用性不比matlab差
2013-04-27 17:50:31 869
转载 有一堆袜子,如何用最快速高效的算法来给袜子配对?
原文链接:【问题描述】昨天我在整理从洗衣店洗干净的一堆袜子,发现我用的方法非常不高效。我用了一个最简单的方法:拿到一只袜子,然后从头到尾去找另外一只袜子。用这种方法需要重复平均超过 n/2*n/4=n2/8 双袜子。作为一个计算机科学家,我在想我应该怎么做?我立马就想到了根据尺寸颜色排序来得到一个复杂度为O(NlogN)的方法。哈希或其他“非原地”的方法在这里不可取
2014-05-15 21:04:45 1080
原创 重新规划
好久没写博客了,发现还是写博的时候才能思考的好些。从上次写博到现在,完成了一个项目,上线了一个网站,打算放弃一个项目,看了一些书,另外的时间情感上波动比较大,但是过的很幸福。 从完整的加班加点完成一个项目,学到了很多经验。从上线网站学到更多的是拼劲和不畏惧。希望这段经历能够体会出更多更多成长的感悟。 已经决定要放弃一个项目,之后的安排是把更多的心思放在实验室。全心发几篇Paper,
2014-02-16 12:58:41 689
原创 医学图像分割方法综述 -田捷
图像分割,这里分为以下几类:一、基于区域的分割方法思路:很好理解,应用这样一个基本事实——区域内特征的相似性。因为不同对象间特征是不连续的,同一对象内部特征是相似的。1、使用阈值 假设目标和背景的像素在灰度上有差异,反映在图像直方图上,不同目标和背景对应不同的峰,而选取一个阈值恰好位于两个峰之间的谷,从而将各个峰分开。 问题:1、难以处理不存在明显
2013-10-25 15:56:36 3056
原创 【基础】图像梯度
标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。1、在单变量的实值函数的情况,梯度只是导数,对于一个线性函数,梯度是线的斜率。2、在二元函数的情形,设函数z=f(x,y)在平面区域D内具有一阶连续偏导数,对于每一点
2013-10-21 15:36:25 6556
原创 特征匹配-NNDR策略,kd树,BBF算法
特征匹配需要考虑匹配策略和如何更快的完成匹配。一:以欧式距离为度量,有三种匹配策略:固定阈值、最近邻、最近邻距离比率(NNDR)固定阈值:就是设定一个阈值,当距离大于阈值,判为不匹配,否则判为匹配。但是一个问题是,阈值很难设定。随着移动到特征空间的不同部分时,阈值的有效范围会变化很大,即没有通用的阈值。最近邻:找最近的那个。最近邻距离比率:定义为最近邻距离和次近邻距离的比值
2013-10-16 20:41:06 23153
原创 特征描述子和特征匹配-SIFT
在检测到特征(如关键点)之后,下一步我们必须匹配他们,也就是说,我们必须要确定哪些特征来自于不同图像的对应位置.图像描述子可以表示特征点的局部表观,以用来下一步做匹配,然而在不同图像之间,图像块的局部表观常常会因图像不同而变化,这就要求我们怎样才能使图像描述子使得对应的图像快之间对这些变化具有更好的不变性,同时保持不同(即非对应的)的图像块之间的区分性. 几个描述子(简): 尺
2013-10-15 14:49:30 9252
转载 【收藏】2014各大网络公司校招笔试题
专栏地址:http://blog.csdn.net/column/details/job-school.html
2013-10-05 22:35:16 1010
转载 学好数据结构的必经之路
摘自:http://blog.csdn.net/zhang_xinxiu/article/details/11661471 在学习时不妨先了解下该学科所要学习的框架知识,对知识点有初步的全局把控。罗列出所学知识的重点。需要清楚哪些东西需要细心研究,哪些东西需要一概而过。 数据结构 学习过程用3个字就是:活-> 死->活 一:学活 对于数据结
2013-09-23 13:31:08 940
转载 剑指offer 七
栈和队列 栈是一个非常常见的数据结构,它在计算机领域中被广泛应用,比如操作系统会给每个线程创建一个栈用来存储函数调用时各个函数的参数、返回地址、临时变量等。栈的特点是后进先出。通常栈是一个不考虑排序的数据结构,我们需要O(n)的时间才能找到栈中最大或者最小的元素。如果想在O(1)时间内得到栈的最大或最小值,需要对栈做特殊的设计。 队列,是另一个很重要的数据
2013-09-15 19:36:09 683
转载 剑指offer 六
树树是一种在实际编程中经常遇到的数据结构。他的逻辑很简单,除了根节点之外每个节点只有一个父节点,根节点没有父节点;除了叶节点之外每个节点只有一个或多个子叶节点,叶节点没有子节点。父节点和子节点之间用指针链接。由于树的操作会涉及到大量的指针,因此与树有关的面试题都不太容易。当面试官想考察应聘者在有复杂指针操作的情况下写代码的能力,往往会想到用与树相关的题目。面试的时候提到的树
2013-09-15 16:13:48 652
转载 剑指offer 五
链表链表应该是面试时被提及最频繁的数据结构。链表的结构很简单,它由若干个结点连接成链状结构。链表的创建、结点插入、结点删除等操作都只需要20行左右的代码就能实现,其代码量适合面试。而像哈希表、有向图灯复杂数据结构,实现他们的一个操作需要代码量很大。另外,链表是一种动态的数据结构,其操作需要对指针进行操作,因此应聘者需要良好的编程功底才能完成完整的操作链表的代码。而且链表的数据结构很
2013-09-15 16:01:18 646
转载 剑指offer 四
字符串字符串是由若干个字符组成的序列。由于字符串在编程时使用的频率非常高,所以为了优化,很多语言都对字符串做了特殊的规定。C/C++中每个字符串都以字符 '\0' 作为结尾,这样我们就能很方便的找到字符串的最后尾部。但是由于这一点,每个字符串中都有一个额外的字符的开销,稍不留神就会造成字符串的越界。还有个知识点,为了节省内存,C/C++把常量字符串放到单独的一个内存区域
2013-09-15 15:20:25 778
转载 剑指offer 三
数据结构 数据结构一直是技术面试的重点,大多数面试题都是围绕着数组、字符串、链表、树、栈、队列这几种常见数据结构展开的,因此每一个应聘者都需要熟练掌握这几种数据结构。1、数组和字符串:两种最基本的数据结构,他们用连续内存分别存储数字和字符。2、链表和树:面试中出现频率最高的数据结构。他们操作都需要操作大量的指针,因此在解决相关问题的时候一定要留意代码的鲁棒性,避免程
2013-09-15 14:33:30 587
转载 剑指offer 二
第二部分:基础知识。编程语言:通常语言面试有三种类型。 第一种类型:对c++关键字的理解程度。 第二种类型:根据事先准备好的代码,分析代码的运行结果。要求对c++考点有透彻的理解。即使对考点有一点点模糊,最终结果和实际运行的结果。 第三种类型:要求应聘者写代码定义一个类型或者实现类型中的成员函数。很多考
2013-09-15 14:32:51 790
转载 剑指offer 一
剑指offer是何海涛根据其在csdn上的一系列博客内容整理成册。全书剖析了50个典型的程序员面试题,典型!是指可以引申出现在面试中的很多题。有5个面:基础知识、代码质量、解题思路、优化效率、综合能力。其中: 1)基础知识,从编程语言、数据结构、算法三个方面总结了程序员面试的知识点。 2)代码质量,讨论影响代码质量的3个要素(规范性、完整性、鲁棒
2013-09-15 14:31:40 783
转载 用算法做人生选择
很有意思的一篇文章,整理在这地方。纠结是人生永恒的话题。当我们在面对各种对选择影响的因素时,如:城市、公司规模、公司性质、薪水、项目、户口、技术、方向、眼界。。你总会纠结一些东西。我个人觉得,如果是非计算机科班出身的人不会做选择,不知道怎么走也罢了,但是我们计算机科班出身的人是学过算法的,懂算法的人应该是知道怎么做选择的。排序算法你不可能要所有的东西,所以你只能
2013-09-13 23:48:45 752
转载 【特征检测与匹配】特征检测器的几个性质
自适应非最大值抑制:由于大多数特征点检测器只是寻找兴趣函数的局部最大值,所以通常会导致图像上特征点的非均匀分布,在对比度大的区域,特征点就会比较密集。为了缓解这个问题,一个想法就是,只检测那些是局部最大值,同时还得要满足其值明显大于其周围半径区域内的响应值。衡量可重复性:可重复性是指,在一副图像中检测到的关键点在另一幅变换过的图像中的对应位置 个像素范围内检测到的频率。(变换包括旋
2013-09-11 11:02:16 1289
转载 【笔记】其他邻域算子
除了线性滤波算子之外,其他的邻域算子这里是指:非线性滤波(如中值滤波和双边滤波)、形态学操作算子、用于计算距离变换和寻找连通量的半全局算子。中值滤波器:如当噪声是散粒噪声而不是高斯噪声时,即图像中偶尔会出现很大的值,用高斯滤波器对图像模糊无法去除噪声像素,只是转换为更柔和但仍然可见的散粒。此时,中值滤波器是很好的选择。但是去除规则高斯噪声还是使用高斯滤波器效果好。双边滤波器
2013-09-10 22:06:57 1796
转载 【笔记】线性滤波
邻域算子作用在给定像素周围的像素上以计算输出值,可以实现图像滤波、图像的平滑和锐化、图像边缘的增强和图像噪声的去除。邻域算子有线性和非线性算子。线性算子是指用不同的权重结合一个小的邻域内的像素,相当于覆盖一个模板。非线性算子如形态学运算、距离变换。 线性滤波运算:其中权重核或掩膜h(k,l)常称为“滤波系数”。上面算子可以简记为: 通常
2013-09-10 20:53:48 1669
原创 【笔记】图像点运算
对图像进行预处理是大多数计算机视觉应用中的第一步,为了使图像噪声减少、锐化、灰度均衡等。图像处理算子是从一幅图像到另一幅图像的像素的值的映射。最简单的处理算子是点算子,即对每个像素的操作不依赖它的邻域像素。 亮度的改变、做图像的加减运算、读取彩色图像的颜色信息、直方图的均衡化等,都可以用点运算来做。 1、亮度的改变:显然常用的点算子是乘以和加上一个常数a也被称为增益
2013-09-04 22:37:35 1389
转载 (收藏)行人检测(Pedestrian Detection)资源
一、论文CVPR 2012 与行人检测相关的论文[1] Contextual Boost for Pedestrian Detection YuanyuanDing, Jing Xiao[2] Understanding Collective CrowdBehaviors:Learning Mixture Model of Dynamic Pedestrian-Agent
2013-08-27 21:56:02 764
转载 (收藏)数组指针与指针数组
那天犯晕搞混,可以看看。转自:http://www.cnblogs.com/hongcha717/archive/2010/10/24/1859780.html数组指针(也称行指针)定义 int (*p)[n];()优先级高,首先说明p是一个指针,指向一个整型的一维数组,这个一维数组的长度是n,也可以说是p的步长。也就是说执行p+1时,p要跨过n个整型数据的长度。如
2013-08-27 15:22:04 471
转载 (收藏) 计算机视觉、机器学习相关领域论文和源代码大集合--持续更新……
FROM:http://blog.csdn.net/zouxy09/article/details/8550952 注:下面有project网站的大部分都有paper和相应的code。Code一般是C/C++或者Matlab代码。最近一次更新:2013-3-17一、特征提取Feature Extraction:· SIFT [
2013-08-21 08:05:25 719
转载 (收藏)40多个关于人脸检测/识别的API、库和软件
转自:http://news.cnblogs.com/n/185616/ 英文原文:List of 40+ Face Detection / Recognition APIs, libraries, and software 译者:@吕抒真 译文:链接 自从谷歌眼镜被推出以来,围绕人脸识别,出现了很多争议。我们相信,不管是不是通过智能眼镜,人脸识别将在人与人交
2013-08-20 12:01:44 934
转载 CVPR2013 论文(visual tracking相关,可供下载)
转自:http://blog.csdn.net/zouxy09/article/details/8856490 看到CVPR2013很多作者都开放了他们的paper或者code,所以自己先查找下visual tracking和一些相关的,下载了部分,为了方便大家交流,先把这些已经下载的放在网盘上,供大家下载哦。呵呵。 百度网盘链接:http://pan.
2013-08-19 12:38:53 910
转载 (转)opencv轮廓高级应用(轮廓匹配,几何直方图)
转自:http://blog.sina.com.cn/s/blog_662c785901011i7z.htmlOpenCv轮廓高级应用(轮廓匹配,几何直方图) 最近再次用到了opencv轮廓,在这里结合作者冰山一角的博客(http://www.cnblogs.com/slysky/)以及自己的体会在此稍加说明。其程序主要参见冰山一角的Blog,遗憾的是代码是Ope
2013-08-19 08:57:46 1646
转载 (转) CvSeq相关操作函数
转自:http://hi.baidu.com/pengjun/blog/item/a72fc8ea030e79d4d439c906.html 函数原型说明CvSeq* cvCreateSeq(int seq_flags,int header_size,int elem_size,CvMemStorage* storage)功能:创
2013-08-19 08:29:54 704
转载 (转)opencv--直方图&最大熵分割
来源:http://blog.csdn.net/yangtrees/article/details/8785377原来一直觉得OpenCV里的直方图函数十分简单,今天临时需要用才发现原来OpenCV的calcHist功能如此强大,不仅能计算常见的1D Hist, calcHist理论上支持32维以下的Hist.(32维啊 有木有!)void calcHist(const Mat
2013-08-18 09:11:46 1040
原创 特征检测器-Harris角点检测
Harris角点检测原理: 角点:最直观的认识就是在水平、竖直两个方向上变化都比较大。理解为拐角。 harris是最典型的角点检测算子。角点经常被检测在边缘的交界处、被遮挡的边缘、纹理性很强的部分(不一定非得是拐点?)。满足这些条件一般都是稳定的、重复性比较高的点,所以实际上他们是不是角点并不重要(因为我们的目标就是找一些稳定、重复性高的点作为特征点)。
2013-08-16 15:52:49 1401
转载 孔径问题
来源:http://mmdays.com/2008/04/17/aperture_problem/視覺皮質與孔徑問題Apr 17th, 2008 by Mr. ThursdayPosted By Mr. Thursday各位經過理髮店的時候,或許都會注意到理髮店有一個捲軸,捲軸不停旋轉,但是看起來會像是有一圈圈的條
2013-08-15 09:17:03 1579
原创 一些大学的视觉实验室站点(待整理)
好站点http://www.cvpapers.com/http://www.eecs.berkeley.edu/Research/Projects/CS/vision/http://iris.usc.edu/USC-Computer-Vision.htmlhttp://vision.ucsd.edu/http://www.caa.tuwien.ac.at/cvl/
2013-08-13 21:40:20 839
转载 单步调试进不去断点
单步调试下,却总是进不了断点,解决办法转:http://blog.csdn.net/onlyou930/article/details/4564385我写了一个函数,昨天还能在这个函数中加入断点进行调试,但是今天却跳不进去了。按F11单步运行,发现出现"没有可用于当前位置的源代码"。,同样弹出“源文件与模板生成时的文件不同”对话框。弄了半天,还是没有解决。提供几种方法:
2013-08-13 20:32:39 1357
转载 IPAM 计算机视觉 summer school
http://www.ipam.ucla.edu/schedule.aspx?pc=GSS2013
2013-08-11 22:55:29 687
转载 (转)老码农教你学英语
转:老码农教你学英语(http://blog.jobbole.com/45296/)1、长期斗争的准备2、听说读写。从读开始,专业书、专业相关资料。之后听,乔帮主容易共鸣。3、写和说,严谨要求不可随意。
2013-08-11 21:16:54 712
原创 颜色分割(待)
整理一些颜色分割方法。实验图片:其中红色部分比较突出,尝试将其分割出来。1、经验阈值提取 RGB转到HSV空间,通过统计的经验阈值设定红色范围,结果如下: 图1代码:#include "cv.h"#include "highgui.h"int main(){ Ipl
2013-08-09 01:12:22 1310
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人