Python map/reduce vs 列表推导式[list comprehension]

本文探讨了Python编程中,map函数和列表推导式在生成列表时的不同特点。map函数增加了代码可读性,而当操作涉及多个元素时,reduce函数则更为适用。
摘要由CSDN通过智能技术生成

本文对列表间生成的便捷方式进行了探讨和比较。

我的风格是:Code speak louder than words.

Map

>>> def a(x):
...     return x * 2
... 
>>> map(a, [1,2,3,4,5]) 
[2, 4, 6, 8, 10]


>>> map(str,[1,2,3,4,5])
['1', '2', '3', '4', '5']
>>>

>>> def caps(name):
...     return name.capitalize()
... 
>>> def lowers(name):
...     return name.lower()
... 
>>> map(caps, map(lowers,['adam', 'LISA', 'barT']))
['Adam', 'Lisa', 'Bart']

当然,强大的列表推导式[list comprehension]完全也有此能力:

>>> [e.capitalize() for e in [f.lower() for f in ['adam', 'LISA', 'barT']]]
['Adam', 'Lisa', 'Bart']

map函数的优点在于仅仅是增强了可读性。

列表推导式的局限在于操作涉及到不只一个元素。这时可以使用另外一个内建函数reduce()

reduce

reduce(function, sequence, starting_value)

>>> def add(x, y):
...     return x + y
... 
>>> reduce(add, [1, 3, 5, 7, 9])
25
>>> reduce(add, range(1, 11))
55
>>> reduce(add, range(1, 11),20)
75

当然可以使用内建函数sum()进行求和。

>>> def fn(x, y):
...     return x * 10 + y
... 
>>> reduce(fn, [1,3,4,5,6,7])
134567

reduce的局限在于接受的函数参数只能有两个参数,即操作涉及到两个元素的情形。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值