HDU 1286 bu

这是一道裸的欧拉函数的题目!题意很简单,就是求1到n-1之间与n互质的个数,很明显用欧拉函数解决,但欧拉函数有两种编程方法!

/*==================================================*\
|递推求欧拉函数phi(i)
\*==================================================*/
for(i=1; i<maxn; i++) a[i]=i;

for(i=2; i<maxn;i+=2)a[i]/=2;

for(i=3; i<maxn; i+=2)

{

   if(a[i]==i)

{

    for(j=i; j<maxn; j+=i)

    a[j]=a[j]/i*(i-1);

}

}

不过我看到有人时这样写的,差不多,不过这样更简洁!

for(i=1; i<maxn; i++) a[i]=i;

for(i=2; i<maxn; i++)

{

    if(a[i]==i)

{

    for(j=i; j<maxn; j+=i)

   a[j]=a[j]/i*(i-1);

}

}

//


我觉得这种就是求n到m之间的总的 满足欧拉函数的总个数!


另外一种就是

int   euler(int x)

{

   int res=x,i;

for(i=2; i<=(int)sqrt(x*1.0)+1;  i++)

{       if(x%i==0)

       res=res/i*(i-1);

    while(x%i==0)

    x/=i;

}

  if(x>1)

 res=res/x*(x-1);

return res;

}

而这种就是求(1到(n-1))与n互质的个数!

这题AC代码:

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;




int euler(int x)
{
    int i,res=x;
    for(i=2; i<=(int)sqrt(x*1.0)+1; i++)
    {
        if(x%i==0)
        {
            res=res/i*(i-1);
            while(x%i==0)
            {
                x/=i;
            }
        }
    }
        if(x>1)res=res/x*(x-1);
        return res;
}




int main()
{
    int t,n;
    while(scanf("%d",&t)!=EOF)
    {
        while(t--)
        {
            scanf("%d",&n);
            printf("%d\n",euler(n));
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值