数据挖掘
无用之人死
数据分析
展开
-
数据挖掘——数据分析挖掘体系
数据分析挖掘体系分析工具数据探索1 数据质量分析11 缺失值分析12 异常值分析13 一致性分析2 数据特征分析21 分布分析22 对比分析23 统计量分析24 周期性分析25 贡献度分析26 相关性分析数据预处理1 数据清洗11 缺失值处理12 异常值处理2 数据集成21 实体识别22 冗余性识别3 数据变换31 函数变换32 规范化33 连续属性离转载 2016-08-03 17:53:29 · 1496 阅读 · 1 评论 -
数据挖掘——线性神经网络的Matlab实现
% 线性神经网络% 感知器的传输函数只能输出两种可能的值,而线性神经网络的输出可以是任意值% 线性神经网络采用widow-hoff学习规则,即lms(least mean square)来更新权值和偏置%% 1.newlind--设计一个线性层%{语法格式: net=newlind(P,T,Pi)P: R×Q矩阵,包含Q个训练输入向量T: S×Q矩转载 2016-08-03 19:35:17 · 1435 阅读 · 0 评论 -
数据挖掘——多层感知器手写体识别的Python实现
# coding=utf-8from sklearn.datasets import load_digitsfrom sklearn.cross_validation import train_test_split, cross_val_scorefrom sklearn.pipeline import Pipelinefrom sklearn.preprocessing import Sta转载 2016-08-03 17:47:48 · 796 阅读 · 0 评论 -
数据挖掘——多层感知器的Python实现
# coding=utf-8from sklearn.cross_validation import train_test_splitfrom sklearn.neural_network import MultilayerPerceptronClassifierimport numpy as np"""让我们训练一个多层感知器来近似XOR函数。目前,scikit-learn的0.16.1转载 2016-08-03 17:44:04 · 4041 阅读 · 0 评论 -
数据挖掘——多层感知器算法简介
XOR(抑或)是一种非线性函数,不能被线性可分人工神经网络简介人工神经网络由三部分组成: - 架构:描述神经元的层次与连接神经元的结构 - 激励函数 - 找出最优权重值的学习算法人工神经网络主要类型: 1. 前馈神经网络:最常用的神经网络类型,一般定义为有向无环图,信号只能沿着最终出入的那个方向传播 2. 反馈神经网络:网络图中有环.反馈环表示网络的一种内部状态多层感知器多层感知器(mu转载 2016-08-03 17:35:17 · 3199 阅读 · 0 评论 -
数据挖掘——单层感知器的Matlab实现
% 单层感知器%% 1.newp--创建一个感知器%{具体用法:net=newp(P,T,TF,LF);P: P是一个R×2的矩阵,R为感知器中输入向量的维度,每一行表示输入向量每个分量的取值 范围如P=[-1,1;0,1]表示输入向量是二维向量[x1,x2],且x1∈[-1,1],x2∈[0,1]T: T表示输出节点的个数,标量TF: 传输函数,可选hardlim和hardli转载 2016-08-03 17:31:18 · 9321 阅读 · 0 评论 -
数据挖掘——单层感知器的Python实现
Python——scikit-learn实现单层感知器scikit-learn 提供了感知器功能。和我们用过的其他功能类似,Perceptron类的构造器接受超参数设置。Perceptron类有fit_transform()和predict()方法。Perceptron类还提供了partial_fit()方法,允许分类器训练流式数据(streaming data)并做出预测。# coding=utf转载 2016-08-03 17:25:27 · 3539 阅读 · 0 评论 -
数据挖掘——单层感知器算法简介
神经网络的学习机理和机构感知器学习算法神经网络的学习机理和机构 在神经网络中,对外部环境提供的模式样本进行学习训练,并能存储这种模式,则称为感知器;对外部环境有适应能力,能自动提取外部环境变化特征,则称为认知器。 神经网络在学习中,一般分为有教师和无教师学习两种。感知器采用有教师信号进行学习,而认知器则采用无教师信号学习的。在主要神经网络如BP网 络,Hopfield网络,ART网络和转载 2016-08-03 17:09:01 · 1507 阅读 · 0 评论 -
Python——BeautifulSoup
# coding=utf-8from bs4 import BeautifulSoupimport bs4import rehtml = """<html><head><title>THe Dormouse's story</title></head><body><p class="title" name="dromouse"><b> The Dormouse's story</b></转载 2016-08-03 20:20:09 · 445 阅读 · 0 评论