题意:
给你一个含n个单词的文本,按照一些规则放入宽度为w的矩形中,怎样使最大的空格最小。
思路:答案是单调的,二分答案,然后用dp来检验,dp[i]表示第i个单词能否结尾,容易想到的是n^2检验,但是肯定会TLE的,需要优化。可以发现如果i-j能够放在一行,但是最大空格会超过mid,那么i+1-j也不行,如果用i来推的时候能够推到[s,t]可以,那么下次就可以直接从t+1开始了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define maxn 50005
#define MAXN 200005
#define mod 1000000007
#define INF 0x3f3f3f3f
#define eps 1e-6
const double pi=acos(-1.0);
typedef long long ll;
using namespace std;
int n,w;
int len[maxn],sum[maxn];
bool dp[maxn];
bool isok(int mid)
{
int i,j,last=0;
memset(dp,0,sizeof(dp));
dp[0]=1;
if(sum[n]+n-1<=w) return true ;
for(i=0; i<n-1; i++)
{
if(!dp[i]) continue ;
for(j=max(i+2,last+1); j<=n; j++)
{
if(w<sum[j]-sum[i]+j-i-1) break ;
if(w>sum[j]-sum[i]+ll(j-i-1)*mid) continue ;
last=j;
dp[j]=1;
if(sum[n]-sum[j]+n-j-1<=w) return true ;
}
}
return false ;
}
void solve()
{
int i,j,le=1,ri=w,mid,ans;
while(le<=ri)
{
mid=(le+ri)>>1;
if(isok(mid))
{
ans=mid;
ri=mid-1;
}
else le=mid+1;
}
printf("%d\n",ans);
}
int main()
{
int i,j;
while(~scanf("%d%d",&w,&n))
{
if(w==0&&n==0) break ;
sum[0]=0;
for(i=1; i<=n; i++)
{
scanf("%d",&len[i]);
sum[i]=sum[i-1]+len[i];
}
solve();
}
return 0;
}