TEST

本文介绍了K-means算法的基本原理及应用。K-means是一种基于划分的动态聚类算法,由J.B.MacQueen在1967年提出。文章详细解释了该算法的工作流程,包括初始化聚类中心、分配样本到最近的簇、更新聚类中心等步骤,并强调了其在线性时间复杂度下的高效性。
摘要由CSDN通过智能技术生成

K-means算法在1967年由J.B.MacQueen提出,是一种基于划分的动态聚类算法,同时也是一种具有较大影响力的无监督学习算法。该算法的优点是思想简单易行,时间复杂性接近线性,对大规模数据的挖掘具有高效性和可伸缩性,在工况分类等领域中有着广泛的应用。

       K-means算法的基本思想是:对一个包含样本数据的样本集进行分类,确定聚类数目K值后,随机选取K个样本作为初始聚类中心,根据相似性度量函数分别计算其它样本到K个聚类中心的距离,并将该未分类样本划分到与之最近的那个聚类中心所在的类中。对每个样本完成分类后,计算每一个类中所有样本数据的平均值作为新的聚类中心,重新划分聚类,直到聚类中心不再改变或者误差小于一定范围时,迭代结束。该算法在每一次迭代过程中,都需将每一个样本重新划分到新的类中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值