- 博客(0)
- 资源 (17)
- 收藏
- 关注
计算机视觉中的数学方法
《计算机视觉中的数学方法》由射影几何、矩阵与张量、模型估计3篇组成,它们是三维计算机视觉所涉及的基本数学理论与方法。射影几何学是三维计算机视觉的数学基础,《计算机视觉中的数学方法》着重介绍射影几何学及其在视觉中的应用,主要内容包括:平面与空间射影几何,摄像机几何,两视点几何,自标定技术和三维重构理论。矩阵与张量是描述和解决三维计算机视觉问题的必要数学工具,《计算机视觉中的数学方法》着重介绍与视觉有关的矩阵和张量理论及其应用,主要内容包括:矩阵分解,矩阵分析,张量代数,运动与结构,多视点张量。模型估计是三维计算机视觉的基本问题,通常涉及变换或某种数学量的估计,《计算机视觉中的数学方法》着重介绍与视觉估计有关的数学理论与方法,主要内容包括:迭代优化理论,参数估计理论,视觉估计的代数方法、几何方法、鲁棒方法和贝叶斯方法。
2017-08-10
probabilistic robotics.pdf Stanford University
斯坦福大学 机器人学基础 probabilistic robotics Sebastian THRUN Stanford University
2017-08-03
基于粒子滤波器的视频目标跟踪
基于粒子滤波器的视频目标跟踪(哈工大博士论文)多区域联合粒子滤波器算法
+概率预测与分类结合的目标跟踪定位方法+粒子滤波器中自适应多特征融合的目标外观特征表示方法+短道速滑滑行数据测量系统
2014-08-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人