关于一元三次方程的学习心得~之一

        各位看官好,首先我提一下我是如何想到学习一元三次方程的:从数据的安全性的角度考虑,想必这个算法对于代码人(程序猿)而言还是挺有用的,至少个人认为在数据安全性方面(因为Provable Security)还是能有一席用武之地的。

        最近为了提升英语于是买了《红与黑》回来看看试着自己翻译着来学习英语(看了几章我感觉自己现在与故事中的人有点类似)。于是,从故事中对欧洲的当时社会,文艺复兴时期有点好奇了,并且对当时的教会也有点感兴趣。于是了解到  海娅姆  与三次方程,这里扫一下盲:他是最先接触并且尝试去解这个三次方程的人,只是由于当时战乱等的条件的影响他在自传里都说没很多时间去研究这个问题。于是这个问题就留给了后人  希皮奥内•德尔•费罗  去解决,据后来  卡尔达诺  说费罗是第1个找到了1元三次方程的一般解法的人(不管你认为卡尔达诺这个人怎么样),第2个是塔尔塔利亚。

        不能小看解这个500年前的题,因为据说这是数学史上最重要的问题之一,那么从这个角度考虑,按道理解这个问题的人都应当有个准入门槛(比如至少得有个数学家头衔之类的),否则个人认为做题的思路或者运算过程会有些毛病出现(因为要是能有什么简单的纯代数方法去解的话, 海娅姆 当年应该就已经解决了)。

        本着没有做过这个题目的人就没有发言权的原则,我也没什么解题的资格因为我只是一个普通的大学生仅此而已(更何况最近我很认真地准备着去考个职业资格证去画PCB),所以做题过程有些什么毛病也请各位见谅(∧_∧),我是最近这2023年6月份,才尝试着用自己的方法去做做看。但是在大众看来500年是一个触发点,因为我们80后的理工科的人都看过电影《大话西游》,做题的过程就好比500年前悟空跟唐僧取经的感觉跌宕起伏,就得本着这次必须成功的信念去做题(若错过那一朵花开的时间,就只能再等500年)。当然我做事也都是用力去做的,于是,我在某宝上买了两本关于三次方程的旧书作为参考的。一个是新蕾出版社的《三次方程风云》还有一个是  许米耶格斯基  的《解算表格》。

        看了《解算表格》的心得就是那就是当年卡尔达诺的一般解法:将方程化成缺二次项的第一类方程去解(这变换的实质在直角坐标系看来是将函数的对称中心水平移至y轴上)。

        卡尔达诺的一般解法是这样子的,首先对方程a•x∧3+b•x∧2+c•x+d=0的形式进行变量代换(式中这个“•”叫“乘以”),先令x=y-b/3a,则方程化为了y∧3+p•y+q=0的形式,然后引进两个辅助变量u与v,令y=u+v代入y∧3+p•y+q=0,然后取uv=-p/3,这样便可消去u+v项,得到u∧3+v∧3=-q,于是可以求出u∧3与v∧3,进而求出u与v,这样就有y的值,最后引入虚数,从而解出x根。

        在这里呢我不想打字很多,既然已经有参考书出板了大家可以看。暂且先不讨论uv=-p/3的这个约束条件是怎么取的。在这里我列出解法只是因为,三次方程的这个解法不好理解。参考书看了有点懂,不好理解的因素点在于为何要将未知数x的值设成x=u+v两部分,《三次方程风云》里提到卡尔达诺用几何的方法进行了修饰性的解释,这是否塔尔塔利亚在1546年不将自己发现的解法公开的原因呢?要是我这篇文章关注的粉丝多了或者火了的话我就持续更新。

        关于虚数的概念,连其发现者  邦贝利  都认为复数“玄虚”,至于荷兰数学家  吉拉德  的说法是:虚数可以肯定一般运算和表现一种形式上的解。个人的心得是,根据我们学习二次方程的分析过程看来,一个方程有负数根与(不符合b∧2-4a•c判别式)无实数根是两个概念。

        我们知道,在中学的时候学习二次函数就已经知道b∧2-4a•c<0,则方程无实数根(即二次函数的直角坐标系图像与x轴无交点),因此我们不需要讨论方程无实数根的情况。至于有负根的情况则需要根据题意进行取舍,比如根据题意我们不需要负根的话,那么我们就只取正根就好。在这里还有一个关于虚数的讨论(不是我自己的讨论,这个问题将近500年了有人讨论过不奇怪),还是某个德国数学家小结得有道理:负数是介于存在于不存在之间的两栖物,而虚数则是心志奔放的奇异创造。

        所以我的学习心得就是,看来卡尔达诺的解法里并没有先去讨论  根的数量问题  ,然后再讨论根的正负问题,就直接引入虚数。这就是问题所在,哪怕发现1个关于一元三次方程的有1个根(根据一元三次函数的直角坐标系的图像我们可以容易得出一元三次方程至少会有1个根)与有3个根的判别式(哪怕根据判别式发现只有一个负根)也比认为三次方程就有3个根要强。

        一元三次方程的有三个不重叠的根的判别式为:

        首先,这个一元三次函数的1阶导数有两个不重叠的根,即c<( (b∧2) / (3•a) ),要是三次函数的1阶导数有两个重根的话,则函数会有1个根或者3个重根。

        其次,当a>0时,这个三次函数的1阶导数的较大的根的对应的三次函数的极值点小于零(要是等于零的话,就会有两个重根)。

        我自己也尝试着做题,最近的研究就是,做题方法是这样子:首先讨论a•( x∧3 ) + b•( x∧2 ) + c•x + d = 0中a与b的正负(先假设a>0),要是b<0,那么可以先将方程a•( x∧3 ) + b•( x∧2 ) + c•x + d = 0化成一元三次方程的第二类(缺一次项)的形式( ( n∧3 ) + ( b2/a )•(n∧2 ) + d2/a = 0 )去解(帖子火了我就用公式编辑器持续更新)。我的想法是这样子的,通过使用构造函数法来解决。

        数学之美,使人着迷,是因为TA代表自然,会遵守大自然的法则,会遵守风中的承诺。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值