Native内存泄漏监控工具MemoryLeakDetector

MemoryLeakDetector是由西瓜视频基础技术团队开发的Native内存泄漏监控工具,具有简单接入、广泛监控、高性能和高稳定性的特点。通过几步简单的配置,如添加依赖、启动监控、打印结果和分析报告,可以有效地监控和定位Android App的native内存泄漏问题,对于内存治理具有显著效果。
摘要由CSDN通过智能技术生成

开源工具:Native内存泄漏监控工具MemoryLeakDetector
MemoryLeakDetector 是西瓜视频基础技术团队开发的一款 native 内存泄漏监控工具,具有接入简单、监控范围广、性能优良、 稳定性好的特点。广泛用于字节跳动旗下各大 App 的 native 内存泄漏治理,收益显著!

Step 1: Add the JitPack repository to your build file
allprojects {
    repositories {
        maven { url 'https://jitpack.io' }
    }
}
Step 2: Add the dependency
dependencies {
    implementation 'com.github.bytedance:memory-leak-detector:0.1.8'
}
Step 3: Add code for simple usage (This step is not necessary for using broadcast control)
// 监控指定的so
Raphael.start(
    Raphael.MAP64_MODE|Raphael.ALLOC_MODE|0x0F0000|1024,
    "/storage/emulated/0/raphael", // need sdcard permission
    ".*libxxx\\.so$"
);
// 监控整个进程
Raphael.start(
    Raphael.MAP64_MODE|Raphael.ALLOC_MODE|0x0F0000|1024,
    "/storage/emulated/0/raphael", // need sdcard permission
    null
);
通过本地广播监控指定的so
## 0x0CF0400=Raphael.MAP64_MODE|Raphael.ALLOC_MODE|0x0F0000|1024
adb shell am broadcast -a com.bytedance.raphael.ACTION_START -f 0x01000000 --es configs 0xCF0400 --es regex  ##  

## ".*libXXX\\.so$"
## 监控整个进程(RaphaelReceiver 组件所在的进程)
## 0x0CF0400=Raphael.MAP64_MODE|Raphael.ALLOC_MODE|0x0F0000|1024
adb shell am broadcast -a com.bytedance.raphael.ACTION_START -f 0x01000000 --es configs 0xCF0400
Step 4: Print result
// 代码控制
Raphael.print();
## 本地广播
adb shell am broadcast -a com.bytedance.raphael.ACTION_PRINT -f 0x01000000
Step 5: Analysis

聚合 report,该文件在 print/stop 之后生成,需要手动 pull 出来
用到离线符号符号化功能的,需将raphael.py里的addr2line改为自己本地的NDK路径
-r: 日志路径, 必需,手机端生成的report文件
-o: 输出文件名,非必需,默认为 leak-doubts.txt
-s: 符号表目录,非必需,有符号化需求时可传,符号表文件需跟so同名,如:libXXX.so,多个文件需放在同一目录下儿

python3 library/src/main/python/raphael.py -r report -o leak-doubts.txt -s ./symbol/
## 数据格式说明
##  201,852,591	totals // 单指raphael拦截到的未释放的虚拟内存总和
##  118,212,424	libandroid_runtime.so
##   28,822,002	libhwui.so
##   24,145,920	libstagefright.so
##   15,679,488	libv8.cr.so
##    9,566,192	libc++_shared.so
##       25,536	libsqlite.so
##       12,288	libv8_libbase.cr.so
##    5,388,741	extras // raphael.py里预设了一些通用配置,可以通过修改规则进一步识别分组到extras里的数据
##
##
## bdb11000, 70828032, 66 => bdb11000是report里此堆栈第一次分配出的内存地址,70828032是report里此堆栈的内存总和,66是report里此堆栈的总次数
## 0x000656cf /system/lib/libc.so (pthread_create + 246)
## 0x0037c129 /system/lib/libart.so (art::Thread::CreateNativeThread(_JNIEnv*, _jobject*, unsigned int, bool) + 448)
## 0x00112137 /system/framework/arm/boot.oat (java.lang.Thread.nativeCreate + 142)
分析 maps

-m: maps文件路径,必需

python3 library/src/main/python/mmap.py -m maps
Step 6: Stop monitoring

// 代码控制
Raphael.stop();

广播控制

adb shell am broadcast -a com.bytedance.raphael.ACTION_STOP -f 0x01000000

以上为官方说明
其他说明:
该工具为当前执行点的分析,一般需要多次执行,前后进行比对,找出增长的地方,再通过分析文件,找到实际占用的地址,确定是那些对象和方法的调用占用
### 以下为广播模式:
1. 启动进程监听(集成该工具的进程)
adb shell am broadcast -a com.bytedance.raphael.ACTION_START -f 0x01000000 --es configs 0xCF0400
2. 打印结果,这个过程写在缓存中
adb shell am broadcast -a com.bytedance.raphael.ACTION_PRINT -f 0x01000000
3. 结束监听,这个时候,才会把结果写入文件
adb shell am broadcast -a com.bytedance.raphael.ACTION_STOP -f 0x01000000
>文件存放在app的: files/raphael 文件夹下(maps、report)
4. 执行文件分析命令:
//默认输出:leak-doubts.txt
python3 memory-leak-detector-master/library/src/main/python/raphael.py -r report 
//指定输出文件名
python3 memory-leak-detector-master/library/src/main/python/raphael.py -r report -o leak-doubts.txt
5. maps文件分析命令:
 python3 memory-leak-detector-master/library/src/main/python/mmap.py -m maps

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值