深度优先搜索DFS

深度优先搜索 DFS

只要可能,就在图中尽量“深入”,深度优先搜索总是对最近才发现的结点v的出发边进行探索,直到该结点的所有出发边都被发现为止。一旦节点v的所有出发边都被发现,搜索则“回溯”到v的前驱结点,来搜索该前驱结点的出发边。
在这里插入图片描述
在这里插入图片描述

根据DFS所生成的深度优先森林,可以定义4种边的类型:

  • 树边:为深度优先森林种某一棵树的边。如果结点v是因为算法对边(u, v)的探索而首先被发现,则边(u, v)是一条树边
  • 后向边B:后向边(u, v)是将结点u连接到其所在深度优先树种一个祖先结点v的边。
  • 前向边F:是将结点u连接到其在深度优先树中一个后代结点v的边(u, v);
  • 横向边:除上述3种之外的边,可以连接同一棵深度优先树种同一深度的两个结点,也可以连接不同深度优先树种的两个结点。

示例

岛屿数量

给一个01矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。
岛屿: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。

DFS:

class Solution {
public:
    /**
     * 判断岛屿数量
     * @param grid char字符型vector<vector<>> 
     * @return int整型
     */
    void dfs(int i, int j, int m, int n, vector<vector<char> >& grid)
    {
        if(i < 0 || j < 0 || i >= m || j >= n)
        {
            // 越界了
            return;
        }
        
        if(grid[i][j] == '1')
        {
            grid[i][j] = '0';
            dfs(i - 1, j, m, n, grid);
            dfs(i + 1, j, m, n, grid);
            dfs(i, j + 1, m, n, grid);
            dfs(i, j - 1, m, n, grid);
        }
    }
    
    int solve(vector<vector<char> >& grid) {
        // write code here
        int m = grid.size();
        int n = 0;
        int lands = 0;
        if(grid.size() > 0)
        {
            n = grid.at(0).size();
        }
        
        for(int i = 0; i < m; ++i)
        {
            for(int j = 0; j < n; ++j)
            {
                if(grid[i][j] == '1')
                {
                    lands++;
                    dfs(i, j, m, n, grid);
                }
            }
        }
        return lands;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值