Hdu 4569 Special equations 2013长沙邀请赛

Special equations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 20    Accepted Submission(s): 12
Special Judge


Problem Description
  Let f(x) = a nx n  +...+ a 1x +a 0, in which a i  (0 <= i <= n) are all known integers. We call f(x) 0 (mod m) congruence equation. If m is a composite, we can factor m into powers of primes and solve every such single equation after which we merge them using the Chinese Reminder Theorem. In this problem, you are asked to solve a much simpler version of such equations, with m to be prime's square.
 

Input
  The first line is the number of equations T, T<=50.
  Then comes T lines, each line starts with an integer deg (1<=deg<=4), meaning that f(x)'s degree is deg. Then follows deg integers, representing a n  to a 0  (0 < abs(a n) <= 100; abs(a i) <= 10000 when deg >= 3, otherwise abs(a i) <= 100000000, i<n). The last integer is prime pri (pri<=10000).  
  Remember, your task is to solve f(x) 0 (mod pri*pri)
 

Output
  For each equation f(x) 0 (mod pri*pri), first output the case number, then output anyone of x if there are many x fitting the equation, else output "No solution!"
 

Sample Input
  
  
4 2 1 1 -5 7 1 5 -2995 9929 2 1 -96255532 8930 9811 4 14 5458 7754 4946 -2210 9601
 

Sample Output
  
  
Case #1: No solution! Case #2: 599 Case #3: 96255626 Case #4: No solution!
 

Source
 

Recommend
zhoujiaqi2010
 

 

容易看出,若x0是同余方程

f(x) º 0 (mod pa)                      (1)

的解,则它必是方程

f(x) º 0 (mod pa- 1)                     (2)

的解,因此,必有与x0相应的方程(2)的某个解x1,使

x0º x1 (mod pa- 1)x0 = x1+pa- 1t0

此处,t0是某个适当的整数。

这提示我们:可以从方程(2)的解中去求方程(1)的解。于是,现在的问题是,对于方程(2)的每个解x1,是否必有方程(1)的解x0与之对应?若有,如何去确定它?

定理  p是素数,a³ 2是整数,f(x) = anxn+L+ a1x + a0是整系数多项式,又设x1是同余方程(2)的一个解。以f¢(x)表示f(x)的导函数。

(f¢(x1)0 (mod p),则存在整数t,使得

x = x1+pa- 1t                       (3)

是同余方程(1)的解。

(f¢(x1) º 0 (mod p),并且f(x1)º 0 (mod pa),则对于t = 01, 2, L, p - 1,式(3)中的x都是方程(1)的解。

证明  我们来说明,如何确定式(3)中的t,使x1+ pa- 1t满足同余方程(1),即要使

an(x1+pa- 1t)n+an- 1(x1+pa- 1t)n- 1+L+a1(x1+pa- 1t)+a0º 0 (mod pa) (4)

f(x1) +pa- 1tf¢(x1)º 0 (mod pa)

tf¢(x1)º-(mod p)                  (5)

下面考虑两种情形。

()  f¢(x)0 (mod p),则关于t的同余方程(5)有唯一解t º t0 (mod p),即t = t0+ pkkÎZ),于是

x º x1+ pa- 1t0 (mod pa)

是同余方程(1)的解。

(f¢(x1) º 0 (mod p),并且f(x1)º 0 (mod pa),则式(5)对于任意的整数t成立,即同余方程(5)p个解

t º i(mod p)0 £ i £ p - 1

于是x º x1+ pa- 1i (mod pa)0 £ i £ p - 1,都是同余方程(1)的解。证毕。

在定理中,没有对f¢(x1)º 0 (mod p)并且 f(x1)0 (mod pa)的情形进行讨论。事实上,此时,同余方程(5)无解。即,我们无法从同余方程(2)的解x1出发去求得同余方程(1)的解。

由定理,可以把解同余方程(1),转化为解同余方程

f(x) º 0 (mod p)                     (6)

事实上,由方程(6)的解,利用定理,可以求出方程f(x) º 0 (mod p2)的解,再利用定理,又可以求出方程f(x)º 0 (mod p3)的解,LL,直到求出方程(1)的解。

 

 

 

#include<stdio.h>
#include<stdlib.h>
#include<vector>
using namespace std;
typedef __int64 II;
int gcd(int a,int b){
    return b==0? a:gcd(b,a%b);
}
typedef struct {
    int deg,a[15];
}function;
function f,diff;
II op(function f, II i){
    II ret=0;
    for(int loop=f.deg;loop>=0;loop--){
        ret=ret*i+(II)f.a[loop];
    }
    return ret;
}
II op(function f, II i, II mod){
    II ret=0;
    for(int loop=f.deg;loop>=0;loop--){
        
        ret=ret*i+f.a[loop];
        ret=ret%mod;
    }
    return ret;
}
II mm(II a,II b,II c){
    if(b==0) return 1%c;
    II tmp=mm(a,b/2,c);
    return tmp*tmp%c*(b%2? a:1)%c;
}
II ext_gcd(II a,II &x,II b,II &y){//a*x+b*y=(x,y)=d
    if(b==0){
        x=1;y=0;
        return a;
    }
    II xx,yy,d=ext_gcd(b,xx,a%b,yy);
    x=yy;
    y=xx-a/b*yy;
    return d;
}

vector<II> linear(II a,II b,II m){//ax=b(mod m)
    a%=m,b%=m;
    vector<II> ret;
    ret.clear();
    II x,y,d=ext_gcd(a,x,m,y);
    //if(d<0) d=-d;
    if(b%d==0){
        II e=(x*(b/d)%m+m)%m;//基础解
        //for(int i=0;i<(d<0? -d:d);i++) ret.push_back((e+i*(m/d))%m);
        ret.push_back(e);
    }
    return ret;
}
int main(){
    //freopen("in_std.txt","r",stdin);
    //freopen("out_std.txt","w",stdout);
    int T;
    II pri,p2;
    scanf("%d",&T);
    for(int cas=1;cas<=T;cas++){
        scanf("%d",&f.deg);
        for(int i=f.deg;i>=0;i--) scanf("%d",&f.a[i]);
        scanf("%I64d",&pri);
        p2=pri*pri;
        II i;
        for(i=0;i<pri;i++)
            if(op(f,i,pri)==0) break;
        if(i>=pri) {printf("Case #%d: No solution!\n",cas);continue;}
        diff.deg=f.deg-1;
        for(int loop=f.deg-1;loop>=0;loop--){
            diff.a[loop]=f.a[loop+1]*(loop+1);//?
        }
        II fx1=op(diff,i),t;
        if(fx1%pri!=0){//fx1与pri互质 
            II fx=op(f,i);
            vector<II> fuck=linear(fx1,-fx/pri,pri);
            t=fuck[0];
            printf("Case #%d: %I64d\n",cas,((i+t*pri)%p2+p2)%p2);
        }else{
            II fx=op(f,i);
            if(fx%p2==0) printf("Case #%d: %I64d\n",cas,i);
            else printf("Case #%d: No solution!\n",cas);
        }        
    }
    //while(1);
    return 0;   
}         




 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值