论文题目:Distance-Aware Hierarchical Federated Learning in Blockchain-enabled Edge Computing Network
期刊:IEEE INTERNET OF THINGS JOURNAL
作者:Xiaoge Huang, Yuhang Wu, Chengchao Liang, Qianbin Chen, Senior Member, IEEE,
and Jie Zhang, Senior Member, IEEE
关键字:分层联邦学习、区块链、数据距离、学习效率
网络模型
1.架构
基于多层区块链融合边缘计算网络的分层联邦学习,包含云层、智能合约层、边缘层和ID(终端)层。
云层:云层由具有强大计算、通信、存储能力的云服务器组成,任务发布者是拥有FL任务的机构或企业。任务发布者发送任务信息,包括任务发布者的身份、任务描述和模型准确率要求给云服务器。云服务器监控任务训练过程并且当满足准确率需求后传递全局模型给任务发布者。FL任务的类别数量是Z。
智能共识层:智能共识层包含主链层和侧链层。主链层和侧链层基于Raft共识和HotStuff共识,用于记录全局模型和边缘模型。在该层中,每个边缘服务器对应于共识节点或领导者节点,每个云服务器对应于唯一的监控节点。在该场景下,边缘服务器和共识节点被称为边缘节点(EN)。每个共识节点存储他的边缘模型在侧链层并且验证来自其它共识节点的边缘模型。Leader节点管理主链和侧链层之间的传递