蒙特卡洛树搜索(MCTS)进行模拟的实现流程

本文详细介绍了使用蒙特卡洛树搜索(MCTS)进行模拟的实现流程,包括选择、扩展、模拟和回溯更新四个关键阶段,深入探讨在部分可观测马尔科夫决策过程(POMDP)中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       首先,要明确的一点是,算法并 不用了解 游戏的 领域知识
       在一个游戏模拟过程中,相关决策的组合可能是一个很大的数,我们如何控制这个模拟行为是满足一定时间上的限制的。我们允许一个参数来控制时间。每次模拟一条路径,直到timeout模拟结束。
       下面先介绍MCTS。
  •        4个阶段,选择,扩展,模拟,回溯更新
        
       
        选择胜率大的分支进行搜索(7/
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值