Vitaly is a very weird man. He's got two favorite digits a and b. Vitaly calls a positive integer good, if the decimal representation of this integer only contains digits a and b. Vitaly calls a good number excellent, if the sum of its digits is a good number.
For example, let's say that Vitaly's favourite digits are 1 and 3, then number 12 isn't good and numbers 13 or 311 are. Also, number111 is excellent and number 11 isn't.
Now Vitaly is wondering, how many excellent numbers of length exactly n are there. As this number can be rather large, he asks you to count the remainder after dividing it by 1000000007 (109 + 7).
A number's length is the number of digits in its decimal representation without leading zeroes.
The first line contains three integers: a, b, n (1 ≤ a < b ≤ 9, 1 ≤ n ≤ 106).
Print a single integer — the answer to the problem modulo 1000000007 (109 + 7).
1 3 3
1
2 3 10
165
该题思路:
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <algorithm> #include <vector> #include <queue> #include <math.h> #include <string> #include <map> #include <set> #include <iostream> using namespace std; typedef long long ss; //const int inf = 1 << 29; #define mod 1000000007 int check(int t,int x,int y) { while(t) { int k=t%10; if(k!=x&&k!=y) return 0; t/=10; } return 1; } ss c[1000010]; ss power(ss t,int n) { ss ans=1; while(n) { if(n%2) { ans*=t; ans%=mod; } t*=t; t%=mod; n/=2; } return ans; } int C(int n,int m) { ss t=c[m]*c[n-m]; t%=mod; ss ans=c[n]*power(t,mod-2); return ans%mod; } int main() { int x,y,n; cin>>x>>y>>n; int ans=0; c[0]=1; for(int i=1;i<=n;i++) { c[i]=c[i-1]*i; c[i]%=mod; } for(int i=0;i<=n;i++) { int t=i*x+y*(n-i); if(check(t,x,y)==0) continue; ans+=C(n,i); ans%=mod; } cout<<ans<<endl; }//如果有问题,或有什么疑惑,可以在评论中提出,小子我看到一定尽力解答