- 博客(2)
- 资源 (4)
- 收藏
- 关注
原创 计算几何算法基础————判断点是否在线段上(另附叉积的重要应用,折线段的拐向判断)
P x Q = P.x * Q.y - P.y * Q.x(交叉相乘)PS:叉积的结果还是一个向量,二维向量的叉积是垂直于两个向量形成的平面的一个向量。比较原始的办法是利用P1P2的坐标做出直线方程,然后代入点Q看是否满足方程,这样代码稍微麻烦些。判断点在线段上这个算法非常的简单,只要学过叉乘(CrossProduct)就很容易搞定。对于有公共端点的线段AB,BC,通过计算AB x AC可以确定AB的拐向。设点为Q,线段为P1P2,判断点Q是否在P1P2上。1.点Q首先要在P1P2所在的直线上。
2024-09-19 18:54:19
654
原创 向量内积与外积
1、对于二维向量:A=(x1,y1),B=(x2,y2),A与B的内积(数量积)为:x1x2+y1y2。对于三维向量:A=(x1,y1,z1),B=(x2,y2,z2),A与B的内积(数量积)为:x1x2+y1y2+z1*z2。2、而对于外积,其计算公式为:a向量×b向量=|a向量|*|b向量|*sinα,其中,α是向量a与向量b的夹角。外积的结果是一个向量,其方向垂直于原来的两个向量所在的平面,模长等于这两个向量构成的平行四边形的面积。向量相乘有两种方式,即内积(数量积)和外积(叉积)。
2024-09-19 18:52:24
5377
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人