描述
在本问题中, 树指的是一个连通且无环的无向图。
输入一个图,该图由一个有着N个节点 (节点值不重复1, 2, ..., N) 的树及一条附加的边构成。附加的边的两个顶点包含在1到N中间,这条附加的边不属于树中已存在的边。
结果图是一个以边组成的二维数组。每一个边的元素是一对[u, v] ,满足 u < v,表示连接顶点u 和v的无向图的边。
返回一条可以删去的边,使得结果图是一个有着N个节点的树。如果有多个答案,则返回二维数组中最后出现的边。答案边 [u, v] 应满足相同的格式 u < v。
示例 1:
输入: [[1,2], [1,3], [2,3]]
输出: [2,3]
解释: 给定的无向图为:
1
/ \
2 - 3
示例 2:
输入: [[1,2], [2,3], [3,4], [1,4], [1,5]]
输出: [1,4]
解释: 给定的无向图为:
5 - 1 - 2
| |
4 - 3
注意:
输入的二维数组大小在 3 到 1000。
二维数组中的整数在1到N之间,其中N是输入数组的大小。
更新(2017-09-26):
我们已经重新检查了问题描述及测试用例,明确图是无向 图。对于有向图详见冗余连接II。对于造成任何不便,我们深感歉意。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/redundant-connection/
求解
class UnionFind {
public:
UnionFind(int n) : count(n) {
parent.reserve(count + 1);
for (int i = 0; i <= count; ++i) {
parent[i] = i;
}
rank.resize(count + 1, 1); // 初始每个的层级均为1
}
bool isConnected(int p, int q) {
return find(p) == find(q);
}
void unionElements(int p, int q) {
int proot = find(p);
int qroot = find(q);
if (proot == qroot) {
return;
}
if (rank[proot] < rank[qroot]) {
parent[proot] = qroot;
} else if (rank[proot] > rank[qroot]) {
parent[qroot] = proot;
} else {
// rank[proot] == rank[qroot]
parent[proot] = qroot;
++rank[qroot]; // proot ”挂载“到qroot下面,本来两个层级一致,现在需要增加1
}
}
private:
int find(int p) {
// 效率低,但是相对1e在unionElements中的逐个赋值效率要高
// 路径压缩优化实例
// 假设有 4 -> 3 -> 2 -> 1 -> 0的指向,则通过路径压缩优化后变为
// 1 -> 0
// 3 -> 2 -> 0
// 4 -> 2 -> 0
while (p != parent[p]) {
parent[p] = parent[parent[p]]; // 路径压缩优化,请细品
p = parent[p];
}
return p;
}
private:
std::vector<int> parent;
int count;
std::vector<int> rank;
};
class Solution {
public:
// 方法一,单独定义一个并查集类辅助实现
vector<int> findRedundantConnection_1e(vector<vector<int>> &edges) {
UnionFind uf(edges.size());
for (auto p : edges) {
if (!uf.isConnected(p[0], p[1])) {
uf.unionElements(p[0], p[1]);
continue;
}
return p;
}
return vector<int>(); // 不存在这样的边,返回空
}
// 方法二,不定义并查集类,仅实现两个辅助函数
vector<int> findRedundantConnection(vector<vector<int>> &edges) {
const int n = edges.size();
vector<int> parent(n + 1, 0);
for (int i = 0; i <= n; ++i) {
parent[i] = i;
}
for (auto p : edges) {
if (!isConnected(parent, p[0], p[1])) {
unionElements(parent, p[0], p[1]);
continue;
}
return p;
}
return vector<int>();
}
private:
int find(vector<int> &parent, int p) {
while (p != parent[p]) {
parent[p] = parent[parent[p]];
p = parent[p];
}
return p;
}
bool isConnected(vector<int> &parent, int p, int q) {
int pParent = find(parent, p);
int qParent = find(parent, q);
return pParent == qParent;
}
void unionElements(vector<int> &parent, int p, int q) {
int pParent = find(parent, p);
int qParent = find(parent, q);
if (pParent != qParent) {
parent[pParent] = qParent;
}
}
};