mysql查询优化技巧

转载自:http://mp.weixin.qq.com/s?__biz=MjM5NzQ3ODAwMQ==&mid=2686978039&idx=1&sn=194d1acb4ef14c7ed0bdf3ccb288232a&scene=0#wechat_redirect

索引优化,查询优化,查询缓存,服务器设置优化,操作系统和硬件优化,应用层面优化(web服务器,缓存)等等。这里的记录的优化技巧更适用于开发人员,都是从网络上收集和自己整理的,主要是查询语句上面的优化,其它层面的优化技巧在此不做记录。


查询的开销指标:


执行时间


检查的行数


返回的行数


建立索引的几个准则:


(1)、合理的建立索引能够加速数据读取效率,不合理的建立索引反而会拖慢数据库的响应速度。


(2)、索引越多,更新数据的速度越慢。


(3)、尽量在采用MyIsam作为引擎的时候使用索引(因为MySQL以BTree存储索引),而不是InnoDB。但MyISAM不支持Transcation。


(4)、当你的程序和数据库结构/SQL语句已经优化到无法优化的程度,而程序瓶颈并不能顺利解决,那就是应该考虑使用诸如memcached这样的分布式缓存系统的时候了。


(5)、习惯和强迫自己用EXPLAIN来分析你SQL语句的性能。


1count的优化

比如:计算id大于5的城市


(1). select count(*) from world.city where id > 5;


(2). select (select count() from world.city) – count() from world.city where id <= 5;


a语句当行数超过11行的时候需要扫描的行数比b语句要多, b语句扫描了6行,此种情况下,b语句比a语句更有效率。当没有where语句的时候直接select count(*) from world.city这样会更快,因为mysql总是知道表的行数。


2避免使用不兼容的数据类型

例如float和int、char和varchar、binary和varbinary是不兼容的。数据类型的不兼容可能使优化器无法执行一些本来可以进行的优化操作。


在程序中,保证在实现功能的基础上,尽量减少对数据库的访问次数;通过搜索参数,尽量减少对表的访问行数,最小化结果集,从而减轻网络负担;能够分开的操作尽量分开处理,提高每次的响应速度;在数据窗口使用SQL时,尽量把使用的索引放在选择的首列;算法的结构尽量简单;在查询时,不要过多地使用通配符如 SELECT * FROM T1语句,要用到几列就选择几列如:SELECT COL1,COL2 FROM T1;在可能的情况下尽量限制尽量结果集行数如:SELECT TOP 300 COL1,COL2,COL3 FROM T1,因为某些情况下用户是不需要那么多的数据的。不要在应用中使用数据库游标,游标是非常有用的工具,但比使用常规的、面向集的SQL语句需要更大的开销;按照特定顺序提取数据的查找。


3索引字段上进行运算会使索引失效

尽量避免在WHERE子句中对字段进行函数或表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:


SELECT * FROM T1 WHERE F1/2=100 应改为: SELECT * FROM T1 WHERE F1=100*2


4避免使用!=或<>、IS NULL或IS NOT NULL、IN ,NOT IN等这样的操作符

因为这会使系统无法使用索引,而只能直接搜索表中的数据。例如: SELECT id FROM employee WHERE id != “B%” 优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。在in语句中能用exists语句代替的就用exists.


5尽量使用数字型字段

一部分开发人员和数据库管理人员喜欢把包含数值信息的字段


设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接回逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。


6合理使用EXISTS,NOT EXISTS子句

如下所示:


(1). SELECT SUM(T1.C1) FROM T1 WHERE (SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)


(2). SELECT SUM(T1.C1) FROM T1WHERE EXISTS(SELECT * FROM T2 WHERE T2.C2=T1.C2)


两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。如果你想校验表里是否存在某条纪录,不要用count(*)那样效率很低,而且浪费服务器资源。可以用EXISTS代替。如:


IF (SELECT COUNT() FROM table_name WHERE column_name = ‘xxx’)可以写成:IF EXISTS (SELECT FROM table_name WHERE column_name = ‘xxx’)


7能够用BETWEEN的就不要用IN


8能够用DISTINCT的就不用GROUP BY


9尽量不要用SELECT INTO语句。SELECT INTO 语句会导致表锁定,阻止其他用户访问该表


10必要时强制查询优化器使用某个索引

SELECT * FROM T1 WHERE nextprocess = 1 AND processid IN (8,32,45) 改成:


SELECT * FROM T1 (INDEX = IX_ProcessID) WHERE nextprocess = 1 AND processid IN (8,32,45)


则查询优化器将会强行利用索引IX_ProcessID 执行查询。


11消除对大型表行数据的顺序存取

尽管在所有的检查列上都有索引,但某些形式的WHERE子句强迫优化器使用顺序存取。如:


SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008


解决办法可以使用并集来避免顺序存取:


SELECT * FROM orders WHERE customer_num=104 AND order_num>1001 UNION SELECT * FROM orders WHERE order_num=1008


这样就能利用索引路径处理查询。【jacking 数据结果集很多,但查询条件限定后结果集不大的情况下,后面的语句快】


12尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引

见如下例子:


SELECT * FROM T1 WHERE NAME LIKE ‘%L%’


SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’


SELECT * FROM T1 WHERE NAME LIKE ‘L%’


即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作,不要习惯性的使用 ‘%L%’这种方式(会导致全表扫描),如果可以使用`L%’相对来说更好;


13虽然UPDATE、DELETE语句的写法基本固定,但是还是对UPDATE语句给点建议

(1). 尽量不要修改主键字段。


(2). 当修改VARCHAR型字段时,尽量使用相同长度内容的值代替。


(3). 尽量最小化对于含有UPDATE触发器的表的UPDATE操作。


(4). 避免UPDATE将要复制到其他数据库的列。


(5). 避免UPDATE建有很多索引的列。


(6). 避免UPDATE在WHERE子句条件中的列。


14能用UNION ALL就不要用UNION

UNION ALL不执行SELECT DISTINCT函数,这样就会减少很多不必要的资源


在跨多个不同的数据库时使用UNION是一个有趣的优化方法,UNION从两个互不关联的表中返回数据,这就意味着不会出现重复的行,同时也必须对数据进行排序,我们知道排序是非常耗费资源的,特别是对大表的排序。


UNION ALL可以大大加快速度,如果你已经知道你的数据不会包括重复行,或者你不在乎是否会出现重复的行,在这两种情况下使用UNION ALL更适合。此外,还可以在应用程序逻辑中采用某些方法避免出现重复的行,这样UNION ALL和UNION返回的结果都是一样的,但UNION ALL不会进行排序。


15字段数据类型优化

(1). 避免使用NULL类型:NULL对于大多数数据库都需要特殊处理,MySQL也不例外,它需要更多的代码,更多的检查和特殊的索引逻辑,有些开发人员完全没有意识到,创建表时NULL是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如0,-1作为默认值。


(2). 尽可能使用更小的字段,MySQL从磁盘读取数据后是存储到内存中的,然后使用cpu周期和磁盘I/O读取它,这意味着越小的数据类型占用的空间越小,从磁盘读或打包到内存的效率都更好,但也不要太过执着减小数据类型,要是以后应用程序发生什么变化就没有空间了。修改表将需要重构,间接地可能引起代码的改变,这是很头疼的问题,因此需要找到一个平衡点。


(3). 优先使用定长型


16关于大数据量limit分布的优化(当偏移量特别大时,limit效率会非常低)

附上一个提高limit效率的简单技巧,在覆盖索引(覆盖索引用通俗的话讲就是在select的时候只用去读取索引而取得数据,无需进行二次select相关表)上进行偏移,而不是对全行数据进行偏移。可以将从覆盖索引上提取出来的数据和全行数据进行联接,然后取得需要的列,会更有效率,看看下面的查询:


mysql> select film_id, description from sakila.film order by title limit 50, 5;


如果表非常大,这个查询最好写成下面的样子:


mysql> select film.film_id, film.description from sakila.film


inner join(select film_id from sakila.film order by title liimit 50,5) as film usinig(film_id);


17程序中如果一次性对同一个表插入多条数据

比如以下语句:


insert into person(name,age) values(‘xboy’, 14);


insert into person(name,age) values(‘xgirl’, 15);


insert into person(name,age) values(‘nia’, 19);


把它拼成一条语句执行效率会更高.


insert into person(name,age) values(‘xboy’, 14), (‘xgirl’, 15),(‘nia’, 19);


18不要在选择的栏位上放置索引,这是无意义的。应该在条件选择的语句上合理的放置索引,比如where,order by

SELECT id,title,content,cat_id FROM article WHERE cat_id = 1;


上面这个语句,你在id/title/content上放置索引是毫无意义的,对这个语句没有任何优化作用。但是如果你在外键cat_id上放置一个索引,那作用就相当大了。


19ORDER BY语句的MySQL优化

(1). ORDER BY + LIMIT组合的索引优化。如果一个SQL语句形如:


SELECT [column1],[column2],…. FROM [TABLE] ORDER BY [sort] LIMIT [offset],[LIMIT];


这个SQL语句优化比较简单,在[sort]这个栏位上建立索引即可。


(2). WHERE + ORDER BY + LIMIT组合的索引优化,形如:


SELECT [column1],[column2],…. FROM [TABLE] WHERE [columnX] = [VALUE] ORDER BY [sort] LIMIT [offset],[LIMIT];


这个语句,如果你仍然采用第一个例子中建立索引的方法,虽然可以用到索引,但是效率不高。更高效的方法是建立一个联合索引(columnX,sort)


(3). WHERE + IN + ORDER BY + LIMIT组合的索引优化,形如:


SELECT [column1],[column2],…. FROM [TABLE] WHERE [columnX] IN ([value1],[value2],…) ORDER BY [sort] LIMIT [offset],[LIMIT];


这个语句如果你采用第二个例子中建立索引的方法,会得不到预期的效果(仅在[sort]上是using index,WHERE那里是using where;using filesort),理由是这里对应columnX的值对应多个。


目前哥还木有找到比较优秀的办法,等待高手指教。


(4).WHERE+ORDER BY多个栏位+LIMIT,比如:


SELECT * FROM [table] WHERE uid=1 ORDER x,y LIMIT 0,10;


对于这个语句,大家可能是加一个这样的索引:(x,y,uid)。但实际上更好的效果是(uid,x,y)。这是由MySQL处理排序的机制造成的。

已标记关键词 清除标记
<p style="font-size:14px;color:#333333;"> <strong><span style="font-size:16px;">课程简介</span></strong> </p> <p style="font-size:14px;color:#333333;"> MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(关系数据库管理系统)应用软件之一, 广泛的应用在各个领域。 </p> <p style="font-size:14px;color:#333333;"> 本课程作为MySQL高级课程, 主要讲解了MySQL中的视图/存储过程/触发器/索引等对象的使用、常见的SQL语句优化技巧 、应用优化、数据库优化、数据库日志等方面的知识,并通过综合案例,对课程中的知识进行一个整合应用。本课程旨在通过MySQL高级部分内容,可以在满足现有业务需求基础上,对MySQL底层的体系结构, 及底层的优化有一个深入的理解 , 对系统的整体性能进行提升。 </p> <p style="font-size:14px;color:#333333;"> <strong>简短简介 : </strong> </p> <p style="font-size:14px;color:#333333;"> <span></span>MySQL 是最流行的关系型数据库之一,广泛的应用在各个领域。本课程主要讲解了MySQL中的常见对象,并详细讲解了优化策略,并通过案例使我们深入理解SQL优化策略,学习完本课程使我们能够独立自主的完成各种SQL优化,提升系统的性能。 </p> <p style="font-size:14px;color:#333333;"> <strong><span style="font-size:16px;">适应人群</span></strong> </p> <p style="font-size:14px;color:#333333;"> <span></span>具有一定MySQL基础, 对数据库的高级知识、优化方面感兴趣的学员。 </p> <p style="font-size:14px;color:#333333;"> <strong><span style="font-size:16px;">课程亮点</span></strong> </p> <p style="font-size:14px;color:#333333;"> <span></span>本课程系统的讲解了SQL优化的思路和实用技巧,并讲解了数据库方面的优化内容, 全方面的对MySQL数据库进行优化。 </p>
相关推荐
<p> <span style="font-size:14px;color:#E53333;">限时福利1:</span><span style="font-size:14px;">购课进答疑群专享柳峰(刘运强)老师答疑服务</span> </p> <p> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;"></span> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>为什么需要掌握高性能的MySQL实战?</strong></span> </p> <p> <span><span style="font-size:14px;"><br /> </span></span> <span style="font-size:14px;">由于互联网产品用户量大、高并发请求场景多,因此对MySQL的性能、可用性、扩展性都提出了很高的要求。使用MySQL解决大量数据以及高并发请求已经是程序员的必备技能,也是衡量一个程序员能力和薪资的标准之一。</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">为了让大家快速系统了解高性能MySQL核心知识全貌,我为你总结了</span><span style="font-size:14px;">「高性能 MySQL 知识框架图」</span><span style="font-size:14px;">,帮你梳理学习重点,建议收藏!</span> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006031401338860.png" /> </p> <p> <br /> </p> <p> <span style="font-size:14px;color:#337FE5;"><strong>【课程设计】</strong></span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;">课程分为四大篇章,将为你建立完整的 MySQL 知识体系,同时将重点讲解 MySQL 底层运行原理、数据库的性能调优、高并发、海量业务处理、面试解析等。</span> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <span style="font-size:14px;"></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>一、性能优化篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括经典 MySQL 问题剖析、索引底层原理和事务与锁机制。通过深入理解 MySQL 的索引结构 B+Tree ,学员能够从根本上弄懂为什么有些 SQL 走索引、有些不走索引,从而彻底掌握索引的使用和优化技巧,能够避开很多实战中遇到的“坑”。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>二、MySQL 8.0新特性篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括窗口函数和通用表表达式。企业中的许多报表统计需求,如果不采用窗口函数,用普通的 SQL 语句是很难实现的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>三、高性能架构篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">主要包括主从复制和读写分离。在企业的生产环境中,很少采用单台MySQL节点的情况,因为一旦单个节点发生故障,整个系统都不可用,后果往往不堪设想,因此掌握高可用架构的实现是非常有必要的。</span> </p> <p style="text-align:justify;"> <br /> </p> <p style="text-align:justify;"> <span style="font-size:14px;"><strong>四、面试篇:</strong></span> </p> <p style="text-align:justify;"> <span style="font-size:14px;">程序员获得工作的第一步,就是高效的准备面试,面试篇主要从知识点回顾总结的角度出发,结合程序员面试高频MySQL问题精讲精练,帮助程序员吊打面试官,获得心仪的工作机会。</span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页