运维管理的常用16个Linux命令(一)

本文介绍了16个Linux系统监控命令,分为系统监控工具类命令和检查统计类工具两大类。系统监控工具类命令包括vmstat、iostat、iotop和top,可用于监控CPU使用率、内存使用情况、虚拟内存交换情况、IO读写情况等。检查统计类工具如df和du则分别用于检查文件系统的磁盘空间使用情况以及统计目录或文件所占磁盘空间的大小。

最近学习的16个Linux命令,主要分为以下几个类别:

系统监控工具类命令:

1、vmstat

vm即为virtual memory 虚拟内存,此命令是给出给定时间间隔的服务器的运行状态值,包括CPU使用率,内存使用,虚拟内存交换情况,IO读写情况等。运行结果如下解图所示,vmstat  2表示每2秒刷新显示一次。

r 表示等待运行的进程数,即多少个进程真的分配到CPU,当这个数目超过CPU的数目就会出现CPU瓶颈。

b 表示阻塞的进程数,即非中断睡眠状态的进程数。

swap 表示虚拟内存已经使用的大小。 free 表示空闲的物理内存大小

buff 用来存储目录有什么内容和权限的缓存。 cache 表示用来记忆我们打开的文件,给文件做相应的缓冲

si 表示每秒从磁盘读入虚拟内存的大小。 so每秒从虚拟内存写入磁盘的大小。i与o是相对于虚拟内存而言的。

bi 表示每秒从块设备接收到的块数即读块设备,bo 表示每秒发送到块设备的块数即写块设备。

in 表示CPU每秒的中断次数,包括时间中断。 cs 表示每秒上下文切换次数。例如我们调用系统函数,就要进行上下文切换,线程的切换,也要进程上下文切换,这个值要越小越好,太大了,要考虑调低线程或者进程的数目,例如在apache和nginx这种web服务器中,我们一般做性能测试时会进行几千并发甚至几万并发的测试,选择web服务器的进程可以由进程或者线程的峰值一直下调,压测,直到cs到一个比较小的值,这个进程和线程数就是比较合适的值了。系统调用也是,每次调用系统函数,我们的代码就会进入内核空间,导致上下文切换,这个是很耗资源,也要尽量避免频繁调用系统函数。上下文切换次数过多表示你的CPU大部分浪费在上下文切换,导致CPU干正经事的时间少了,CPU没有充分利用,是不可取的。

us 表示用户cpu时间,sy 表示系统cpu时间,id表示空闲cpu时间。wa表示等待IO cpu时间。

2、iostat

从系统启动开始的CPU平均时间,类似于uptime,同时还会创建一个服务器磁盘子系统的活动报告,包括cpu使用情况和磁盘使用情况。

iostat -c 单独显示CPU使用时间   iostat -d 单独显示硬盘设备(Device)的I/O口的每秒传输次数和读写速度及容量。

主要参数说明: %user 表示显示user level为应用时,CPU占用情况;%nice表示显示user level在nice priority时,cpu占用情况,%system表示显示user level为kernel系统时cpu占用情况。

%idle表示空闲时间所占比例。

tps表示该设备每秒IO传输的次数。

3、iotop

是一个用来监视磁盘IO使用状况的top类工具。详细功能用于没有在终端页面跑起来,后续再介绍。

4、top

动态观察系统进程状况,了解系统资源整体性能。

具体细节和参数见百度百科资料。

2、检查统计类工具

df(disk free ):检查文件系统的磁盘空间使用情况,多少被使用,多少剩余。


具体参数指标:-a 显示所有文件的磁盘使用情况

-k 以字节为单位显示磁盘使用情况  -i 以i节点信息显示而不是磁盘块   -T显示出文件的系统类型  -h以易读的方式显示磁盘空间   -H采用1000而不是1024进行容量转换。

du(disk usage):统计目录(或文件)所占磁盘空间的大小。

-a为每个指定文件显示所占磁盘情况,-h 以人性化方式显示, -s 近显示总计当前目录大小。

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值