AI
文章平均质量分 51
zack-jie
这个作者很懒,什么都没留下…
展开
-
nvidia/cuda docker镜像标签
nvidia/cuda是英伟达提供的docker镜像,有很多版本,本文以cuda10.1版本为例,列举其标签docker pull nvidia/cuda:10.1-base-ubuntu16.04docker pull nvidia/cuda:10.1-runtime-ubuntu16.04docker pull nvidia/cuda:10.1-devel-ubuntu16.04docker pull nvidia/cuda:10.1-cudnn7-runtime-ubuntu16.0.原创 2020-07-22 15:22:02 · 3081 阅读 · 5 评论 -
深度学习pretrain之数据预处理
采用迁移学习,我们必须严格按照预训练模型初始训练时的方式归一化,而且不同模型的归一化方式不同,VGG和ResNet是减去训练集均值,Xception和InceptionV3是线性缩放到[-1,1];网络默认输入为:VGG和ResNet是224*224*3Xception和InceptionV3是299*299*3tensorflow数据预处理tensorflow使用slim库对...原创 2018-11-09 16:54:53 · 5351 阅读 · 1 评论 -
Keras学习笔记
1.keras创建模型两种方式方式1:model = Sequential()model.add(Conv2D(filters=16,kernel_size=2, activation='relu', input_shape=(224, 224, 3)))model.add(MaxPooling2D(pool_size=2, strides=2))model.add(Conv2D(f...原创 2018-08-31 14:45:16 · 263 阅读 · 0 评论 -
迁移学习模型下载
对于当前比较火热的,使用神经网络+TensorFlow对图像进行分类,随着网络越来越庞大,参数越来越多,使得训练更加困难,由于大部分人没有很强的GPU,所以当前迁移学习越来越火;对于分类网络,如inception和mobilenet,Google提供一个很好的迁移学习脚本: https://github.com/tensorflow/hub/blob/master/examples/imag...原创 2018-08-20 19:55:42 · 1195 阅读 · 0 评论 -
TensorFlow学习笔记
1.基本概念使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据Session, Graph, Operation ,Ten...原创 2018-08-17 07:35:08 · 273 阅读 · 0 评论 -
VGG网络结构
论文:《VERY DEEP CONVOLUTIONAL NETWORK SFOR LARGE-SCALE IMAGE RECOGNITION》VGG16和VGG19模型是一种十分强大的分类模型,属于DCNN(Deep Convolutional Neural Network ),比较起ALEXNET, VGG对图片有更精确的估值以及更省空间 VGG结构 我们看D列(VG...原创 2018-08-13 20:19:43 · 2508 阅读 · 0 评论 -
Mobilenets v2
论文:《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》https://arxiv.org/abs/1801.04381和MobileNet V1相比,MobileNet V2主要的改进有两点:1、Linear Bott...原创 2018-08-12 20:39:31 · 769 阅读 · 0 评论 -
MobileNets v1
论文:MobileNets: Efficient Convolutional Neural Networks for MobileVision Applicationshttps://arxiv.org/abs/1704.04861 MobileNets是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络;中点在于压缩模型,同时保证精度。MobileNets是基于一...原创 2018-08-12 20:08:05 · 2383 阅读 · 1 评论 -
Inception v4
Inception v4主要利用残差连接(Residual Connection)来改进v3结构,代表作为,Inception-ResNet-v1,Inception-ResNet-v2,Inception-v4论文地址:Inception[V4]: Inception-v4, Inception-ResNet and the Impact of Residual Connections ...原创 2018-08-12 16:04:22 · 496 阅读 · 0 评论 -
Inception V3
论文:Inception[V3]: Rethinking the Inception Architecture for Computer Visionhttps://arxiv.org/abs/1512.00567 Inception V3 引入了 卷积分解(Factorization),将一个较大的二维卷积拆成两个较小的一维卷积1.将7*7分解成两个一维的卷积(1*7,7...原创 2018-08-12 11:52:04 · 201 阅读 · 0 评论 -
Inception v2
论文: Inception[V2]: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shifthttps://arxiv.org/abs/1502.03167 Inception v2的网络,代表作为加入了BN(Batch Normalization)层,...原创 2018-08-12 11:31:04 · 324 阅读 · 0 评论 -
Inception v1
Inception目的是为了增加网络深度和宽度的同时减少参数论文地址:[v1] Going Deeper with Convolutions, 6.67% test error http://arxiv.org/abs/1409.4842 Inception v1的网络,将1x1,3x3,5x5的conv和3x3的pooling,堆叠在一起,一方面增加了网络的width,另一方面...原创 2018-08-12 10:47:16 · 6957 阅读 · 0 评论 -
TensorFlow API
tensorflow常用函数操作组 操作 Maths Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal Array Concat, Slice, Split, Constant, Rank, Shape, Shuffle Matrix MatMul, MatrixInverse, MatrixDetermi...翻译 2018-08-12 07:24:47 · 200 阅读 · 0 评论 -
非极大抑制(Non Maximal Suppression)
最近在看SSD检测网络,其中关于非极大抑制(Non Maximal Suppression)概念非极大抑制主要是用来解决检测结果中,有多个区域重叠问题,如下图:非极大抑制对于有相交的box,根据score和box的坐标信息,从中找到置信度比较高的bounding box;对于没相交的就直接保留下来,作为最后结果。代码实现,参考https://github.com/tensorflo...原创 2018-07-30 20:07:18 · 1832 阅读 · 0 评论 -
Android studio编译TensorFlow lite工程
1.系统环境window10/tensorflow-gpu 1.8.0/Python 3.6.4/cuda 9.0/cudnn-9.0-windows10-x64-v7/Android studio 3.1.22.源码下载从Github上下载最新的TensorFlow源码,下载路径:https://github.com/tensorflow/tensorflow.git3.TensorFlow ...原创 2018-06-13 21:02:57 · 1795 阅读 · 1 评论