轻春
码龄12年
关注
提问 私信
  • 博客:297,330
    社区:211
    问答:2,628
    300,169
    总访问量
  • 129
    原创
  • 1,235,095
    排名
  • 588
    粉丝
  • 0
    铁粉

个人简介:Talk is cheap, show me the code.

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2013-04-18
博客简介:

李宁宁

博客描述:
要一直努力那~
查看详细资料
个人成就
  • 获得284次点赞
  • 内容获得72次评论
  • 获得1,762次收藏
  • 代码片获得263次分享
创作历程
  • 1篇
    2019年
  • 17篇
    2018年
  • 79篇
    2017年
  • 26篇
    2016年
  • 6篇
    2015年
成就勋章
TA的专栏
  • 机器学习荐货情报局
    22篇
  • LeetCode专栏
    81篇
  • 机器学习
    21篇
  • leetcode
    81篇
  • c语言基础
    2篇
  • 自动化运维
  • DWR
    1篇
  • java
    4篇
  • 错误调试记录
    2篇
  • QT
    5篇
  • c++
    4篇
  • Ubuntu
    3篇
  • MacOS
    1篇
  • 增强学习
    1篇
  • Sarsa
    1篇
  • 推荐系统
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

推荐系统从零单排系列(四)—Word2Vec理论与实践(上)

推荐系统从零单排系列(四)—Word2Vec理论与实践(上)【导读】Word2Vec是Embedding中非常基本的模型,训练出来的词向量不仅能保持语义与语法上的相关性,并且可以实现类似代数运算的能力。除了在NLP中作为基本网络模块,在推荐系统等领域中也是应用广泛,相信聪明的你肯定看到过类似的介绍,但是又没有深入、系统的学习过。没关系,让我们现在开始来一步一步的解决这个问题。One-Hot...
原创
发布博客 2019.05.11 ·
701 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

计算广告CTR预估系列(十一)--谷歌DCN模型理论与实践

计算广告CTR预估系列(十一)–谷歌DCN模型理论与实践计算广告CTR预估系列(十一)–谷歌DCN模型理论与实践一、介绍二、相关工作三、DCN特点四、DCN4.1 Embedding and Stacking Layer4.2 Cross Network4.3 Deep Network4.4 Combination Layer五、泛化FM六、实验七、代码实战...
原创
发布博客 2018.09.12 ·
7486 阅读 ·
3 点赞 ·
1 评论 ·
30 收藏

计算广告CTR预估系列(十)--AFM模型理论与实践

计算广告CTR预估系列(十)–AFM模型理论与实践计算广告CTR预估系列(十)–AFM模型理论与实践一、简介二、FM三、AFM3.1 模型3.2 模型训练3.3 过拟合四、总结五、代码实践Reference计算广告CTR预估系列往期回顾一、简介AFM全称是Attentional Factorization Machine,和NFM是同一个作者。...
原创
发布博客 2018.09.12 ·
3333 阅读 ·
0 点赞 ·
2 评论 ·
8 收藏

计算广告CTR预估系列(九)--NFM模型理论与实践

计算广告CTR预估系列(九)–NFM模型理论与实践计算广告CTR预估系列(九)–NFM模型理论与实践一、引言二、Model Feature Interaction2.1 介绍2.2 FM2.2.1 优点2.2.2 缺点2.3 Deep Neural Network2.3.1 DNN优化困难三、Neural Factorization Machine(NFM)...
原创
发布博客 2018.09.12 ·
5150 阅读 ·
5 点赞 ·
5 评论 ·
20 收藏

计算广告CTR预估系列(八)--PNN模型理论与实践

计算广告CTR预估系列(八)–PNN模型理论与实践计算广告CTR预估系列(八)–PNN模型理论与实践一、介绍1.1 名词解释1.2 数据特点1.3 参数约定二、相关工作三、损失 & 评价函数3.1 损失函数3.2 评价函数四、PNN详解4.1 架构图4.2 IPNN4.3 OPNN4.4 PNN*五、优化六、总结七、代码实战IPNNO...
原创
发布博客 2018.09.12 ·
3337 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

计算广告CTR预估系列(六)--阿里Mixed Logistic Regression

计算广告CTR预估系列(六)–阿里Mixed Logistic Regression计算广告CTR预估系列(六)–阿里Mixed Logistic Regression一、技术背景二、研究现状三、MLR算法3.1 结构化先验3.2 线性偏置3.3 模型级联3.4 增量训练3.5 L1,L2,1正则化 / 分组稀疏四、实现技巧4.1 并行化4.2 Common Fe...
原创
发布博客 2018.06.13 ·
3392 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践一、介绍二、评估函数2.1 Normalized Cross-Entropy(NE)2.2 Calibration三、模型架构3.1 决策树Feature Transforms3.2 Data freshness3....
原创
发布博客 2018.06.13 ·
13252 阅读 ·
8 点赞 ·
6 评论 ·
40 收藏

【一网打尽】机器学习梯度下降优化算法

【一网打尽】机器学习梯度下降优化算法1. 梯度下降梯度的方向是上升的方向,所以我们是沿着梯度的反方向,每一次根据学习率来决定走的步长,争取到达谷底。2. 梯度下降变体各种各样的变体,主要是为了在参数更新准确度和所需要时间之间做一个trade-off。2.1 Batch gradient descent使用所有的数据集来计算更新梯度。 缺点:非常耗...
原创
发布博客 2018.06.06 ·
806 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

计算广告CTR预估系列(五)--阿里Deep Interest Network理论

计算广告CTR预估系列(五)–阿里Deep Interest Network理论计算广告CTR预估系列(五)–阿里Deep Interest Network理论1. 背景1.1 名词解释1.2 相关工作2. 系统总览2.1 训练数据2.2 特征处理2.3 评价指标3. 原理3.1 Base Model3.2 DIN Design3.3 Dice: Data D...
原创
发布博客 2018.06.06 ·
15459 阅读 ·
10 点赞 ·
5 评论 ·
49 收藏

计算广告CTR预估系列(四)--Wide&Deep理论与实践

计算广告CTR预估系列(四)–Wide&Deep理论与实践计算广告CTR预估系列(四)–Wide&Deep理论与实践1. 名词解释1.1 Memorization 和 Generalization1.2 Wide 和 Deep1.3 Cross-product transformation2. Wide & Deep Model2.1 推荐系统2....
原创
发布博客 2018.06.06 ·
19783 阅读 ·
12 点赞 ·
4 评论 ·
80 收藏

计算广告CTR预估系列(三)--FFM理论与实践

计算广告CTR预估系列(三)–FFM理论与实践计算广告CTR预估系列(三)–FFM理论与实践1. 发展2. 理论公式3. 思想3.1 Poly23.2 FM3.3 FFM3.3.1 FFM模型–思想3.3.2 FFM模型–方程3.3.3 FFM模型–学习算法3.3.4 FFM模型–多值类别型特征4. 各模型计算复杂度5. 优缺点6. 使用FFM需要注意的地...
原创
发布博客 2018.05.15 ·
3716 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

计算广告CTR预估系列(二)--DeepFM实践

计算广告CTR预估系列(二)–DeepFM实践计算广告CTR预估系列(二)–DeepFM实践0. 变量说明1. 架构图与公式1.1 架构图1.2 公式1.2.1 公式参考1.2.2 FM Component维度问题2. 核心代码拆解2.1 输入2.2 Embedding2.3 FM Component - 1维特征2.4 FM Component - 2维组合...
原创
发布博客 2018.05.10 ·
3805 阅读 ·
3 点赞 ·
6 评论 ·
12 收藏

计算广告CTR预估系列(一)--DeepFM理论

计算广告CTR预估系列(一)–DeepFM理论 本文首发于公众号: 机器学习荐货情报局 计算广告CTR预估系列(一)–DeepFM理论DeepFM1. CTR预估2. 模型演进历史2.1 线性模型2.2 FM模型2.3 遇上深度学习3. DeepFM3.1 FM Component3.2 Deep Component3.3 对比其他模型FNNPNNW...
原创
发布博客 2018.05.04 ·
5577 阅读 ·
2 点赞 ·
4 评论 ·
29 收藏

N皇后问题

N皇后问题-I问题描述 n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击。 给定一个整数n,返回所有不同的n皇后问题的解决方案。 每个解决方案包含一个明确的n皇后放置布局,其中“Q”和“.”分别表示一个女王和一个空位置。样例: 对于4皇后问题存在两种解决的方案:[ [".Q..", // Solution 1 ".....
原创
发布博客 2018.05.04 ·
283 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Batch Normalization, 会其意知其形

Batch NormalizationBatch Normalization归一化/正则化Batch Normalization原理BN添加位置效果反 normalize代码实践归一化/正则化数据归一化、正则化是非常重要的步骤,用于重新缩放输入的数值,确保在反向传播期间更好的收敛。一般来说,采用的方法是减去平均值在除以标准差。如果不这样做,某些特征...
原创
发布博客 2018.05.02 ·
1336 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

隐马尔可夫模型(HMM),了解一下?

隐马尔可夫模型(HMM)隐马尔可夫模型(HMM)1. 隐马尔可夫模型基本概念1.1 定义1.2 观测序列生成过程1.3 3个基本问题2. 概率计算方法2.1 直接计算法2.2 前向算法2.3 后向算法3. 学习算法3.1 监督学习方法3.2 非监督学习方法 EM算法 Baum-Welch算法4. 预测算法4.1 近似算法4.2 维特比算法...
原创
发布博客 2018.04.29 ·
2584 阅读 ·
0 点赞 ·
1 评论 ·
6 收藏

【机器学习荐货情报局】置信区间-看这一篇就够了

置信区间 - 看这一篇就够了欢迎关注公众号:机器学习荐货情报局 一起进步,一起学习,一起充电~ 欢迎投稿,讨论,拍砖 1. 定义在统计学中,一个样本的置信区间是对总体参数的一个区间估计。置信区间给出的是,声称总体参数的真实值在测量值的区间所具有的可信程度或者说是概率。这个概率又叫做置信水平。举例来说:再一次大选中,上帝视角看到某人的支持率是55%,而置信水平0.95上的置信区间是...
原创
发布博客 2018.04.28 ·
5064 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

二叉树之理解记忆并背诵,了解一下?

内容主要包含: 1. 二叉树中DFS三种搜索的模板程序 (递归+非递归) 2. 二叉树BFS非递归版本 3. 二叉树常见到必背的考题 不管你是刷题学习,还是准备面试,二叉树下面的这几个程序都是 理解记忆并背诵!理解记忆并背诵!理解记忆并背诵!重要的事情说三遍真的太常用了,小哥哥小姐姐一定要掌握哦~BFS递归版本void bfs(TreeNode...
原创
发布博客 2018.04.09 ·
707 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【C++对象模型】之虚函数详解

Function语义学Member function的各种调用方式1. Nonstatic Member Functions实际上member function被转换为nonmember function。C++设计准则就是:nonstatic member function至少必须和一般的nonmember function有相同的效率。
原创
发布博客 2017.11.13 ·
538 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【C++对象模型】之Data Members

Data Member语义 C++将nonstatic data members直接放在每一个class object中。对于继承而来的nonstatic data members(不管是virtual或是nonvirtual base class)也是如此. static data members被放置在程序的一个global data segment中,不会影响个别的class o
原创
发布博客 2017.11.13 ·
750 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多