李宁宁

要一直努力那~

推荐系统从零单排系列(四)—Word2Vec理论与实践(上)

推荐系统从零单排系列(四)—Word2Vec理论与实践(上) 【导读】Word2Vec是Embedding中非常基本的模型,训练出来的词向量不仅能保持语义与语法上的相关性,并且可以实现类似代数运算的能力。除了在NLP中作为基本网络模块,在推荐系统等领域中也是应用广泛,相信聪明的你肯定看到过类似的...

2019-05-11 11:22:38

阅读数 118

评论数 0

计算广告CTR预估系列(十一)--谷歌DCN模型理论与实践

计算广告CTR预估系列(十一)–谷歌DCN模型理论与实践 计算广告CTR预估系列(十一)–谷歌DCN模型理论与实践 一、介绍 二、相关工作 三、DCN特点 四、DCN 4.1 Embedding and Stacking Layer 4.2 Cross Network 4.3 Deep ...

2018-09-12 23:31:25

阅读数 2198

评论数 0

计算广告CTR预估系列(十)--AFM模型理论与实践

计算广告CTR预估系列(十)–AFM模型理论与实践 计算广告CTR预估系列(十)–AFM模型理论与实践 一、简介 二、FM 三、AFM 3.1 模型 3.2 模型训练 3.3 过拟合 四、总结 五、代码实践 Reference 计算广告CTR预估系列往期回顾 一、简介 ...

2018-09-12 23:30:05

阅读数 1032

评论数 1

计算广告CTR预估系列(九)--NFM模型理论与实践

计算广告CTR预估系列(九)–NFM模型理论与实践 计算广告CTR预估系列(九)–NFM模型理论与实践 一、引言 二、Model Feature Interaction 2.1 介绍 2.2 FM 2.2.1 优点 2.2.2 缺点 2.3 Deep Neural Network 2.3...

2018-09-12 23:29:04

阅读数 1982

评论数 3

计算广告CTR预估系列(八)--PNN模型理论与实践

计算广告CTR预估系列(八)–PNN模型理论与实践 计算广告CTR预估系列(八)–PNN模型理论与实践 一、介绍 1.1 名词解释 1.2 数据特点 1.3 参数约定 二、相关工作 三、损失 & 评价函数 3.1 损失函数 3.2 评价函数 四、PNN详解 4...

2018-09-12 23:28:07

阅读数 1046

评论数 0

计算广告CTR预估系列(六)--阿里Mixed Logistic Regression

计算广告CTR预估系列(六)–阿里Mixed Logistic Regression 计算广告CTR预估系列(六)–阿里Mixed Logistic Regression 一、技术背景 二、研究现状 三、MLR算法 3.1 结构化先验 3.2 线性偏置 3.3 模型级联 3.4 增量训练 3...

2018-06-13 16:41:17

阅读数 1797

评论数 0

计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践 一、介绍 二、评估函数 2.1 Normalized Cross-Entropy(NE) 2.2 Calibration 三、模...

2018-06-13 16:38:11

阅读数 5820

评论数 6

【一网打尽】机器学习梯度下降优化算法

【一网打尽】机器学习梯度下降优化算法 1. 梯度下降 梯度的方向是上升的方向,所以我们是沿着梯度的反方向,每一次根据学习率来决定走的步长,争取到达谷底。 2. 梯度下降变体 各种各样的变体,主要是为了在参数更新准确度和所需要时间之间做一个trade-off。 2.1 Ba...

2018-06-06 09:25:42

阅读数 257

评论数 0

计算广告CTR预估系列(五)--阿里Deep Interest Network理论

计算广告CTR预估系列(五)–阿里Deep Interest Network理论 计算广告CTR预估系列(五)–阿里Deep Interest Network理论 1. 背景 1.1 名词解释 1.2 相关工作 2. 系统总览 2.1 训练数据 2.2 特征处理 2.3 评价指标 3...

2018-06-06 09:23:50

阅读数 9862

评论数 5

计算广告CTR预估系列(四)--Wide&Deep理论与实践

计算广告CTR预估系列(四)–Wide&Deep理论与实践 计算广告CTR预估系列(四)–Wide&Deep理论与实践 1. 名词解释 1.1 Memorization 和 Generalization 1.2 Wide 和 Deep 1.3 ...

2018-06-06 09:22:35

阅读数 9949

评论数 0

计算广告CTR预估系列(三)--FFM理论与实践

计算广告CTR预估系列(三)–FFM理论与实践 计算广告CTR预估系列(三)–FFM理论与实践 1. 发展 2. 理论公式 3. 思想 3.1 Poly2 3.2 FM 3.3 FFM 3.3.1 FFM模型–思想 3.3.2 FFM模型–方程 3.3.3 FFM模型–学习算法 3.3.4 ...

2018-05-15 09:47:26

阅读数 2240

评论数 0

计算广告CTR预估系列(二)--DeepFM实践

计算广告CTR预估系列(二)–DeepFM实践 计算广告CTR预估系列(二)–DeepFM实践 0. 变量说明 1. 架构图与公式 1.1 架构图 1.2 公式 1.2.1 公式参考 1.2.2 FM Component维度问题 2. 核心代码拆解 2.1 输入 2.2 Embedd...

2018-05-10 10:19:07

阅读数 2182

评论数 5

计算广告CTR预估系列(一)--DeepFM理论

计算广告CTR预估系列(一)–DeepFM理论 本文首发于公众号: 机器学习荐货情报局 计算广告CTR预估系列(一)–DeepFM理论 DeepFM 1. CTR预估 2. 模型演进历史 2.1 线性模型 2.2 FM模型 2.3 遇上深度学习 3. DeepFM 3.1 F...

2018-05-04 22:15:41

阅读数 3086

评论数 4

N皇后问题

N皇后问题-I 问题描述 n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击。 给定一个整数n,返回所有不同的n皇后问题的解决方案。 每个解决方案包含一个明确的n皇后放置布局,其中“Q”和“.”分别表示一个女王和一个空位置。 样例: 对于4皇后问题存在...

2018-05-04 00:49:40

阅读数 93

评论数 0

Batch Normalization, 会其意知其形

Batch Normalization Batch Normalization 归一化/正则化 Batch Normalization 原理 BN添加位置 效果 反 normalize 代码实践 归一化/正则化 数据归一化、正则化是非常重要的步骤,用于重新缩放输入的数...

2018-05-02 16:24:23

阅读数 773

评论数 0

隐马尔可夫模型(HMM),了解一下?

隐马尔可夫模型(HMM) 隐马尔可夫模型(HMM) 1. 隐马尔可夫模型基本概念 1.1 定义 1.2 观测序列生成过程 1.3 3个基本问题 2. 概率计算方法 2.1 直接计算法 2.2 前向算法 2.3 后向算法 3. 学习算法 3.1 监督学习方法 3.2 非监督学习方法 E...

2018-04-29 10:05:56

阅读数 1099

评论数 1

【机器学习荐货情报局】置信区间-看这一篇就够了

置信区间 - 看这一篇就够了 欢迎关注公众号:机器学习荐货情报局 一起进步,一起学习,一起充电~ 欢迎投稿,讨论,拍砖 1. 定义 在统计学中,一个样本的置信区间是对总体参数的一个区间估计。置信区间给出的是,声称总体参数的真实值在测量值的区间所具有的可信程度或者说是概率。这个概率又叫...

2018-04-28 13:44:01

阅读数 1806

评论数 0

二叉树之理解记忆并背诵,了解一下?

内容主要包含: 1. 二叉树中DFS三种搜索的模板程序 (递归+非递归) 2. 二叉树BFS非递归版本 3. 二叉树常见到必背的考题 不管你是刷题学习,还是准备面试,二叉树下面的这几个程序都是 理解记忆并背诵!理解记忆并背诵!理解记忆并背诵!重要的事情说三遍 真...

2018-04-09 22:36:53

阅读数 316

评论数 0

【C++对象模型】之虚函数详解

Function语义学 Member function的各种调用方式1. Nonstatic Member Functions实际上member function被转换为nonmember function。C++设计准则就是:nonstatic member function至少必须和一般的no...

2017-11-13 22:50:01

阅读数 184

评论数 0

【C++对象模型】之Data Members

Data Member语义 C++将nonstatic data members直接放在每一个class object中。对于继承而来的nonstatic data members(不管是virtual或是nonvirtual base class)也是如此. static data...

2017-11-13 22:46:49

阅读数 212

评论数 0

提示
确定要删除当前文章?
取消 删除